انطباق الگوریتم حرکتی سایبان هوشمند نمای ساختمان با الگوی رفتاری گیاه اگزالیس در راستای کنترل نور روز (نمونهموردی: شهر شیراز)
محورهای موضوعی : انرژی و معماریزهرا یارمحمودی 1 , طاهره نصر 2 , حامد مضطرزاده 3
1 - دانشجوی دکترای معماری، گروه معماری، دانشکده هنر و معماری، واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران
2 - دانشیار شهرسازی، گروه معماری، دانشکده هنر و معماری، واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران.
3 - گروه معماری، دانشکده هنر و معماری، واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران.
کلید واژه: سایبان هوشمند, انرژی تابشی, نور روز, شدت روشنایی, گیاه اگزالیس, شیراز.,
چکیده مقاله :
با گسترش تکنولوژی، مصرف انرژی به خصوص در بخش ساختمان افزایش یافته است. وجود سایبان هوشمند در ساختمان میتواند باعث کاهش مصرف انرژی شود. با وجود این، طراحی بهترین سیستمهای مدیریتی مبتنیبر قوانین که بهطور همزمان قرار گرفتن در معرض نور خورشید، گرمای بیش از حد و مصرف انرژی را بتواند به حداقل برساند، همواره موضوعی چالش برانگیز برای طراحان بهشمار میآید. باتوجه به اینکه طبیعت همیشه منبع الهام انسان بوده است، از اینرو، گیاهان بهعنوان منبع الهام جهت طراحی سایبان هوشمند در پژوهش حاضر انتخاب شدهاند. گیاهان، مانند ساختمان با ریشه در جای خود ثابت هستند، اما نسبت به تغییرات محیط پیرامون خود واکنش نشان میدهند. بنابراین دارای عملکرد رفتاری مشابه ساختمان هستند. هدف از انجام پژوهش حاضر، طراحی سایبان هوشمند نمای ساختمان با الهام از الگوی رفتاری گیاه اگزالیس در طول شبانهروز جهت کنترل ورود نور خورشید به فضای داخلی ساختمان در اقلیم گرم و نیمهخشک و فصل تابستان است. روش پژوهش حاضر مدلسازی-شبیهسازی است. از نرمافزار راینو6 و پلاگین گرسهاپر جهت مدلسازی سایبان و از افزونهی لیدیباگ و هانیبی جهت تحلیل انرژی تابشی و آنالیز نور روز استفاده شده است. نتایج حاصله حاکی از آن است که حرکت سایبان هوشمند در اقلیم شیراز متناسب با مسیر حرکت خورشید میتواند در حالت سایبان با پنلهای بسته، نیمه باز و باز به ترتیب: 30%، 50% و 80% انرژی تابشی جذب شده توسط سطح شفاف نمای جنوبی، نور روز وارد شده به فضای داخلی و شدت روشنایی را کاهش دهد. این نشان دهندهی عملکرد مطلوب سایبان هوشمند نمای ساختمان متناسب با اقلیم شیراز است. در نهایت پیشنهاداتی جهت طراحی کاربردیتر سایبان نما ارائه شده که شامل: طراحی سایبان به صورت مدولار، گسترش پذیر، سازگار با محیط پیرامون و طراحی به روش دیجیتال جهت تولید دقیقتر محصول است.
With the advancement of technology, energy consumption, particularly in the building sector, has significantly increased. Nowadays, designing smart facade shades is considered one of the proposed solutions in this field. However, designing optimal rule-based management systems that simultaneously minimize sunlight exposure, overheating, and energy consumption remains a challenging task for designers. To design a smart shade, it is necessary to first develop an appropriate and responsive motion pattern for the chosen performance. Considering that nature has always been a source of inspiration for humans and has sustainably operated over time, plants were selected as the inspiration source for designing the smart shade in this study. Plants, like buildings, are rooted and stationary yet respond to changes in their surrounding environment. Hence, they exhibit behavioral functions similar to building facades. This similarity arises from the fact that building facades, like plant skins, must protect the internal environment from external environmental changes. This highlights the importance of exploring plant-inspired sources to achieve desirable motion and form patterns. Additionally, Shiraz, characterized by a hot and semi-arid climate, was chosen as the case study due to its hot summers and intense sunlight on southern building facades, which necessitates the use of facade shades. The findings indicate that the movement of the smart facade shade in Shiraz’s climate, aligned with the sun’s path, can result in a 30% reduction in absorbed solar radiation on the transparent facade surface, as well as decreased daylight penetration and lighting intensity when the shade panels are fully closed. For shades with semi-open and open panels, the reductions were 50% and 80%, respectively. Furthermore, the lighting intensity in all shade states remained within standard ranges, demonstrating the efficient performance of the smart facade shade in Shiraz's climate. Finally, recommendations were made to enhance the practicality of facade shade design, including modular and expandable designs, adaptability to the surrounding environment, and digital methods for more precise product manufacturing.
[1] S. Jain, C. Karmann, and J. Wienold, “Behind electrochromic glazing: Assessing user’s perception of glare from the sun in a controlled environment,” Energy Build., vol. 256, p. 111738, 2022.
[2] X. Su, L. Zhang, Y. Luo, and Z. Liu, “Energy performance of a reversible window integrated with photovoltaic blinds in Harbin,” Build. Environ., vol. 213, p. 108861, 2022.
[3] S. Liu et al., “Energy-saving potential prediction models for large-scale building: A state-of-the-art review,” Renew. Sustain. Energy Rev., vol. 156, p. 111992, 2022.
[4] S. Rostamzad, M. Khakzand, M. Faizi, and H. Sanaieian, “Daylight performance of toplighting: An overview,” Sp. Ontol. Int. J., vol. 10, no. 4, pp. 47–65, 2021, doi: 10.22094/soij.2021.1924761.1407.
[5] S. Razazi, F. Mozaffari Ghadikolaei, and R. Rostami, “The effect of external and internal shading devices on energy consumption and co2 emissions of residential buildings in temperate climate,” Sp. Ontol. Int. J., vol. 11, no. 1, pp. 75–89, 2022, doi: 10.22094/soij.2022.1950918.1476.
[6] M. Rastegari, S. Pournaseri, and H. Sanaieian, “Analysis of daylight metrics based on the daylight autonomy (DLA) and lux illuminance in a real office building atrium in Tehran,” Energy, vol. 263, p. 125707, 2023.
[7] F. Motazedian, M. Mahdavinejad, F. Habib, and D. Diba, “Classroom lighting control systems and level of energy consumption, Tehran, Iran,” 2016.
[8] S. H. Tabibian, F. Habib, and S. A. H. Garakani, “The Role of Daylight within the Vault of Shahrak-e-Gharb Jame Mosque in Tehran,” Int. J. Archit. Urban Dev., vol. 10, no. 3, pp. 41–46, 2020.
[9] Z. Kong, R. Zhang, J. Ni, P. Ning, X. Kong, and J. Wang, “Towards an integration of visual comfort and lighting impression: A field study within higher educational buildings,” Build. Environ., vol. 216, p. 108989, 2022.
[10] C. Tian, T. Chen, and T. Chung, “Experimental and simulating examination of computer tools, Radlink and DOE2, for daylighting and energy simulation with venetian blinds,” Appl. Energy, vol. 124, pp. 130–139, 2014, doi: https://doi.org/10.1016/j.apenergy.2014.03.002.
[11] E. Noorzai, P. Bakmohammadi, and M. A. Garmaroudi, “Optimizing daylight, energy and occupant comfort performance of classrooms with photovoltaic integrated vertical shading devices,” Archit. Eng. Des. Manag., vol. 0, no. 0, pp. 1–25, 2022, doi: 10.1080/17452007.2022.2080173.
[12] {Isak Worre} and Anke Pasold Foged, “Performative Responsive Architecture Powered by Climate,” ACADIA 2010 Life Inf., pp. 243--249, 2010.
[13] Z. Yarmahmoodi, T. Nasr, and H. Moztarzadeh, “Algorithmic Design of Building Intelligent Facade to Control the Daylight Inspired by the Rafflesia Flower Kinetic Pattern,” Naqshejahan-Basic Stud. New Technol. Archit. Plan., pp. 1–24, 2023.
[14] H. Haidari, “Decisive design aspects for designing a kinetic façade.” Eindhoven University of Technology, 2015.
[15] T. Nasr, Z. Yarmahmoodi, and S. M. Ahmadi, “The Effect of Kinetic Shell’s Geometry on Energy Efficiency Optimization Inspired by Kinetic Algorithm of Mimosa pudic,” Naqshejahan-Basic Stud. New Technol. Archit. Plan., vol. 10, no. 3, pp. 219–230, 2020.
[16] H. M. Zahra Yarmahmoodi, Tahereh Nasr, “Modeling a Kinetic Smart Shell to Optimize Daylight Inspired by the Movement Algorithm of Carnivorous Plant,” Life Sp. J., vol. 3, no. 1, 2023, [Online]. Available: 10.22094/lsj.2023.704902.
[17] A. Zekri, R. Fayaz, and M. Golabchi, “Harvesting Daylight in High-rise Office Buildings Using Phyllotaxis Model,” Int. J. Archit. URBAN Dev., vol. 11, no. 3, p. 41, 2021.
[18] R. De Bei, X. Wang, L. Papagiannis, and C. Collins, “Assessment of bunch thinning as a management technique for Semillon and Shiraz in a hot Australian climate,” OENO One, vol. 56, no. 1, pp. 161–174, 2022.
[19] J. Shaeri and M. Mahdavinejad, “Prediction Indoor Thermal Comfort in Traditional Houses of Shiraz with PMV/PPD model,” Int. J. Ambient Energy, pp. 1–19, 2022.
[20] F. Bano and V. Sehgal, “Finding the gaps and methodology of passive features of building envelope optimization and its requirement for office buildings in India,” Therm. Sci. Eng. Prog., vol. 9, pp. 66–93, 2019.
[21] P. C. Tabares-Velasco, C. Christensen, and M. Bianchi, “Verification and validation of EnergyPlus phase change material model for opaque wall assemblies,” Build. Environ., vol. 54, pp. 186–196, 2012.
[22] H. Aibaghi Esfahani, K. Momeni, and F. Hassan Pour, “Finding the Best Orientation of the Educational Buildings in Hot Arid Regions in Iran, in order to achieve theOptimum Annual Energy Consumption, Using Computer Simulation (Case Study: a Double Class School in Zahedan),” Sp. Ontol. Int. J., vol. 9, no. 1, pp. 13–36, 2020, [Online]. Available: https://soij.qazvin.iau.ir/article_673425.html.
[23] S. H. Sedigh Ziabari, H. Zolfagharzadeh, F. Asadi Malek Jahan, and S. M. Salavatian, “Comparative Study on the Influence of Window To Wall Ratio on Energy Consumption and Ventilation Performance in Office Building of Temperate Humid Climate: a Case Study in Rash,” Sp. Ontol. Int. J., vol. 8, no. 2, pp. 33–42, 2019, [Online]. Available: https://soij.qazvin.iau.ir/article_667317.html.
[24] N. Fazeli, M. Mahdavinejad, and M. R. Bemaniyan, “Dynamic Envelope and Control Shading Pattern for Office Buildings Visual Comfort in Tehran,” Sp. Ontol. Int. J., vol. 8, no. 3, pp. 31–40, 2019.
[25] A. Mohammed et al., “Reducing the Cooling Loads of Buildings Using Shading Devices: A Case Study in Darwin,” Sustainability, vol. 14, no. 7, p. 3775, 2022.
[26] A. Vilaboa Díaz and P. M. Bello Bugallo, “Study of the Influence of Solar Shading Devices in the Solar Inputs in Buildings,” in Sustainable Energy Development and Innovation, Springer, 2022, pp. 431–437.
[27] A. Kirimtat, M. F. Tasgetiren, P. Brida, and O. Krejcar, “Control of PV integrated shading devices in buildings: A review,” Build. Environ., p. 108961, 2022.
[28] D. Berkouk, T. A. K. Bouzir, S. Mazouz, S. Boucherit, and N. Mokhtari, “Studying the influence of shading devices on indoor thermal comfort in desert and Mediterranean climates,” in IOP Conference Series: Earth and Environmental Science, 2022, vol. 992, no. 1, p. 12004.
[29] A. Mohammed, “Study of Shading Device Parameters of the Mixed-Mode Ventilation on Energy Performance of an Office Building: Simulation Analysis for Evaluating Energy Performance in Egypt,” in Advances in Architecture, Engineering and Technology, Springer, 2022, pp. 285–297.
[30] S. M. Ponda, “Trends of Sun-shading Devices in Nairobi Since 1900.” University of Nairobi, 2022.
[31] V. M. Gnecco and L. Pajek, “Analysis of Fixed Shading Devices in Brazilian Elementary Schools Regarding Cooling Energy Demand and Daylighting.”
[32] W. F. M. Yusoff, M. I. Shaharil, M. F. Mohamed, M. R. M. Rasani, A. R. Sapian, and N. D. Dahlan, “Review of openings with shading devices at naturally ventilated buildings,” Archit. Eng. Des. Manag., pp. 1–17, 2022.
[33] S. Zhao, Q. Pan, D. Gao, and J. Cheng, “Integrating internet of things and mixed reality to teach performance-based architectural design: a case study of shading devices,” Educ. Inf. Technol., pp. 1–19, 2022.
[34] X. Hong, J. Lin, X. Yang, S. Wang, and F. Shi, “Comparative Analysis of the Daylight and Building-Energy Performance of a Double-Skin Facade System with Multisectional Shading Devices of Different Control Strategies,” J. Energy Eng., vol. 148, no. 3, p. 5022001, 2022.
[35] J. Xue, Y. Fan, Z. Dong, X. Hu, and J. Yue, “Improving Visual Comfort and Health through the Design of a Local Shading Device,” Int. J. Environ. Res. Public Health, vol. 19, no. 7, p. 4406, 2022.
[36] A. Krstić-Furundžić and T. Kosić, “Assessment of energy and environmental performance of office building models: A case study,” Energy Build., vol. 115, pp. 11–22, 2016, doi: https://doi.org/10.1016/j.enbuild.2015.06.050.
[37] S. Barter, T. Siebert, R. Bramley, M. Herderich, and M. Krstic, “Better late than never: the formation of distinctive pepper aromas in cool-climate Shiraz,” WINE Vitic. J., p. V37N1, 2022.
[38] R. Gh, M. Kameni Nematchoua, V. Mohammad Nejad, and R. Yousefi, “Regional simulation model of the meteorological effects of Maharlu Lake on the human climate health of Shiraz in Iran. 2017; 5 (3): 1-16 Original Article [DOI: 10.29252/jhs. 5.3. 1][Downloaded from jhs. mazums. ac. ir on 2022-04-16] 1/16,” Meteorol. Eff. Maharlu Lake Hum. Clim. Heal. Gh. Roshan. al, p. 2.
[39] M. Mahmoudi and S. Nivi, “Improving of Climatic Technology According to Sustainable Development,” Naqshejahan-Basic Stud. New Technol. Archit. Plan., vol. 1, no. 1, pp. 35–52, 2011.
[40] S. M. Molayzahedi and M. A. Abdoli, “A New Sustainable Approach to Integrated Solid Waste Management in Shiraz, Iran,” Pollution, vol. 8, no. 1, pp. 303–314, 2022.
[41] “Climate & Weather Averages in Shiraz, Iran.” https://www.timeanddate.com/weather/iran/shiraz/climate.
[42] A. Zarkesh, H. Mahyari, and M. Mahdavinejad, “An intelligent adaptive skin from a biomimetic approach for energy consumption reduction,” Hoviatshahr, 2022.
[43] E. Chen, G. Lu, L. Barnik, and D. Correa, “Fast and Reversible Bistable Hygroscopic Actuators for Architectural Applications based on Plant Movement Strategies.”
[44] F. Darwin, C., Darwin, The power of movement in plants. John Murray, 1880.
[45] A. W. Galston and P. J. Davies, “Control mechanisms in plant development.,” Control Mech. plant Dev., 1970.
[46] N. Nakanishi, F., Nakazawa, M., Katayama, “Opening and closing of Oxalis leaves in response to light stimuli,” J. Biol. Educ., vol. 39, no. 2, pp. 87–91, 2005.
[47] S. Schleicher, Bio-inspired compliant mechanisms for architectural design: transferring bending and folding principles of plant leaves to flexible kinetic structures. 2015.
[48] Z. Javani and S. F. Mousavinia, “Identifying and treating unobserved heterogeneity with FIMIX-PLS in effect of Daylight metric(sDA) on happiness in a residential complex,” J. Archit. Thought, vol. 5, no. 10, pp. 237–256, 2021, doi: 10.30479/at.2020.10904.1245.
[49] M. M. Ghazikhanlo Sani K, Habibipour R, “Measurement of the illumination in official and educational places in the univercities of Hamadan and comparison with international standards,” Pajouhan Sci J, vol. 11, no. 4, pp. 29–35, 2013, [Online]. Available: http://psj.umsha.ac.ir/article-1-55-en.html.
[50] M. F. R. F. M. Mehravar, “The acceptable illumination level for office occupants in Tehran,” JIAU, vol. 12, no. 1, pp. 79–92, 2021, [Online]. Available: https://doi.org/10.30475/isau.2020.195247.1263.