مقایسه سمیت نانوذرات نقره تولید شده به روشهای شیمیایی و زیستی بر مراحل ناپلیوس و بالغ Artemia franciscana
محورهای موضوعی : فصلنامه زیست شناسی جانوریسکینه مشجور 1 , مجتبی علیشاهی 2 , زهرا طولابی دزفولی 3
1 - گروه زیست شناسی دریا، دانشکده علوم و فنون دریایی، دانشگاه هرمزگان، بندر عباس، ایران
2 - گروه علوم درمانگاهی، دانشکده دامپزشکی، دانشگاه شهید چمران اهواز، اهواز، ایران
3 - گروه علوم درمانگاهی، دانشکده دامپزشکی، دانشگاه شهید چمران اهواز، اهواز، ایران
کلید واژه: نانوذرات نقره, سمیت, Artemia fransiscana, ماکروجلبک دریایی,
چکیده مقاله :
در مطالعه حاضر، اثرات سمیت و تفاوت میزان حساسیت مراحل تکاملی ناپلیوس و بالغ Artemia fransiscana، نسبت به جذب نانوذرات نقره شیمیایی و بیوسنتز شده توسط عصاره آبی جلبک دریایی سبز Ulva flexuosa، ارزیابی گردید. به این منظور ناپلی و بالغ آرتمیا، در غلظت های متوالی افزایشی نانوذرات نقره شیمیایی و بیوسنتزی قرار داده شدند. تلفات در هر گروه در زمان های 12،24، 36 و 48 ساعت بعد از مجاورت ثبت و با نرم افزار Probit آنالیز گردید.نتایج نشان داد کهسمیت هر دو نوع نانوذره نقره بر ناپلیوس و بالغ آرتمیا با افزایش غلظت و نیز با افزایش مدت زمان مجاورت روند افزایشی داشته و تفاوت ها میان آنها معنی دار بود (05/0p<). بنحوی که پس از 48 ساعت، غلظت ایجاد کننده ی50% تلفات (LC50)، در ناپلی آرتمیا با نانوذرات نقره شیمیایی 8/31 میلی گرم در لیتر و برای نانوذرات نقره بیوسنتز شده توسط جلبک سبز 9/366 میلی گرم در لیتر بود. حال آنکه این غلظت در ارتباط با بالغین آرتمیا طی مجاورت با نانوذرات نقره شیمیایی برابر با 47 میلی گرم در لیتر و برای نانوذرات نقره بیوسنتزی240 میلی گرم در لیتر ارزیابی شد. مقایسه نتایج سمیت نشان می دهد که در هر دو مرحله زندگی آرتمیا، نانوذرات نقره شیمیایی در قیاس با بیوسنتزی، از قدرت سمیت بالاتری برخوردار بوده، لکن حساسیت ناپلیوس های آرتمیا نسبت به نانوذرات نقره شیمیایی بیشتر از مرحله بلوغ ولی نسبت به نوع زیست تولیدی کمتر است. این تحقیق می تواند در توسعه کاربری نانوذرات زیست سازگار با اهداف بوم مدیریتی پیشگام باشد.
In this study, the toxicity of silver nanoparticles (AgNPs) and the difference in sensitivities in naupliar and adult stages of Artemia fransiscana, were evaluated to absorption of chemical and biosynthesized by the seaweed Ulva flexuosa, forms of AgNPs. The A. nauplii and adult were exposed to additive serial concentration of biosynthetic and chemical AgNPs. Mortality in each group at the times of 12, 24, 36 and 48 h after exposure to AgNPs were recorded and analyzed via Probit software. The toxicity of these two types of AgNPs on A. nauplii and adult increased in a dose-dependent manner, but also their toxicity increased along with duration of exposure time. The toxicity of nanoparticles were significantly different (P<0.05). Therefore, after 48 h, the LC50 value of chemical AgNPs in the A. nauplii was 31.8 mg/l, while 48 h LC50 for biosynthesis AgNPs was 366.96 mg/l. While the concentration of the chemical AgNPs have assessed in adults artemia during exposure was 47 mg/l and for biosynthesis form of AgNPs was 240 mg/l. The chemical form of AgNPs was more toxic potential than a biosynthetic form of its. The sensitivity of A. nauplii to chemical AgNPs was more than to mature stage, but compared to biosynthesis form was less than adult. This research could be pioneer to the development of biocompatible functionality of nanoparticles with eco-management objectives.
1. توانا، م.، کلباسی، م.ر.، عابدیان کناری، ع.م.، جوهری، س.ع.، 1393. ارزیابی میزان جذب و رهایش نانوذرات نقره و دی اکسید تیتانیوم در ناپلی آرتمیا فرانسیسکانا در شوریهای مختلف. مجله اقیانوس شناسی ، سال پنجم، شماره 19، صفحات 103-91.
2. رحیمی، ز.، یوسفزادی، م.، نوری، ا.، اکبرزاده، آ.، 1393. سنتز نانوذرات نقره با استفاده از سه گونه ماکروجلبک دریایی خلیج فارس. مجله اقیانوس شناسی ، سال پنجم، شماره 19، صفحات 78-71.
3. صادقی، ف.، یوسفزادی، م.، مشجور، س.، رحیم زاده، ز.، 1394. بررسی خواص آنتی فولینگ نانو ذرات بر لارو سیپریس بارناکل گونه Amphibalanus amphitrite. پایان نامه کارشناسی ارشد، دانشگاه هرمزگان.
4. Amulyavichus A., Daugvila A., Davidonis R., Sipavichus C., 1998. Study of chemical composition of nanostructural materials prepared by laser cutting of metals. The Physics of Metals and Metallography, 85: 111–117.
5. Asghari S., Johari S.A., Lee J.H., Kim Y.S., Jeon Y.B., Choi H.J., Moon M.C., Yu I.J., 2012. Toxicity of various silver nanoparticles compared to silver ions in Daphnia magna. Journal of Nanobiotechnology, 10: 10-14.
6. Arulvasu C., Jennifer S., Prabhu D., Chandhirasekar D., 2014. Toxicity effect of silver nanoparticles in brine shrimp Artemia. The Scientific World Journal, 2014: 1-10.
7. Ates M., Daniels J., Arslan Z., Farah I.O., 2013. Effects of aqueous suspensions of titanium dioxide nanoparticles on Artemia salina: assessment of nanoparticle aggregation, accumulation, and toxicity. Environmental Monitoring and Assessment, 185(4): 3339-3348.
8. Becaro A.A., Jonsson C.M., Puti F.C., Siqueira M.C., Mattoso L.H.C., Correa D.S., Ferreira, M.D., 2015. Toxicity of PVA-stabilized silver nanoparticles to algae and microcrustaceans. Environmental Nanotechnology, Monitoring and Management, 3: 22-29.
9. Clark L.S., Bowen S.T., 1978. The genetic of Artemia salina. The Journal Heredity, 67: 385-388.
10. Costa-Lotufo L.V., Khan M.T., Ather A., Wilke D.V., Jimenez P.C., Pessoa C., de Moraes M.E., de Moraes M.O., 2005. Studies of the anticancer potential of plants used in Bangladeshi folk medicine. Journal of Ethnopharmacology, 99: 21-30.
11. Falugi C., Aluigi M.G.A., Faimali M., Ramoino P., 2012. Dose dependent effects of silver nanoparticles on reproduction and development of different biological models. Environmental Quality, 8: 61-65.
12. Gambardella C., Mesaric, T., Milivojević T., Sepcic, K., Gallus L., Carbone S., Ferrando S., Faimali M., 2014. Effects of selected metal oxide nanoparticles on Artemia salina larvae: evaluation of mortality and behavioural and biochemical responses. Environmental Monitoring and Assessment, 186: 4249-59.
13. Gavhane A.J., Padmanabhan P., Kamble S.P., Jangle S.N., 2012. Synthesis of silver nanoparticles using extract of Neem leaf and triphala and evaluation of their antimicrobial activities. International Journal of Pharma and Bio Sciences,3(3): 88-100.
14. Godwin H.A., Chopra K., Bradley K.A., Cohen Y., Herr Harthorn B., Hoek E.M.V., Hoden P., Keller A.A., Lenihan H.S., Nisbet R.M., Nel A.E., 2009. The University of California center for the environmental implications of nanotechnology. Environmental Science and Technology, 43: 6453-6457.
15. Gomez G.B., Herrara M.A., Abreu F.A., Roque A., 1998. Bioencapsulation of two different vibrio species in nauplii of the brine shrimp, Microbialogy, 64: 2318-2322.
16. Herre Dasht M., Mirvaghefi A.R., 2013. Applications of nanotechnology in fisheries. Journal of Nanotechnology, 11(6):13-15.
17. Jagtap U.B., Bapat V.A., 2013. Green synthesis of silver nanoparticles using Artocarpus heterophyllus lam. seed extract and its antibacterial activity. Industrial Crops and Products, 46: 132-137.
18. Johari S.A, Habibi L., Hosseini S.J., 2014. Toxicity of colloidal nano-silver to zebrafish, Danio rerio: ions, nanoparticles, or both?. Aquaculture Nutrition and Biochemistry,1(1): 59-68.
19. Johari S.A, Kalbassi M.R., Soltani M., Yu I.J., 2016. Application of nanosilver-coated zeolite as water filter media for fungal disinfection of rainbow trout (Oncorhynchus mykiss) eggs. Aquaculture International, 24: 23-28.
20. Kim S., Choi J.E., Choi J., Chung K.H., Park K., Yi J., Ryu D.Y., 2009. Oxidative stress dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicology In Vitro, 23: 1076-1084.
21. Kumar P., Senthamil Selvi S., Govindaraju M., 2012. Seaweed-mediated biosynthesis of silver nanoparticles using Gracilariacorticata for its antifungal activity against Candidaspp. Applied Nanoscience, 3: 495-500.
22. Kumar P., Selvi S.S., Praba A.L., Selvaraj M., Rani L.M., Suganthi P., Sarojini Devi B., Govindaraju M., 2012. Antibacterial activity and in-vitro cytotoxicity assay against brine shrimp using silver nanoparticles synthesized from Sargassum ilicifolium. Digest Journal of Nanomaterials and Biostructures, 7: 1447-1455.
23. Lapresta-Fernandez A., Fernandez A., Blasco J., 2012. Nanoecotoxicity effects of engineered silver and gold nanoparticles in aquatic organisms. Trends in Analytical Chemistry, 32: 40-59.
24. Libralato G., 2014. The case of Artemia spp. in nanoecotoxicology. Marine Environmental Research, 101: 38-43.
25. Matranga V., Corsi I., 2012. Toxic effects of engineered nanoparticles in the marine environment: Model organisms and molecular approaches. Marine Environmental Research, 76: 32-40.
26. OECD, 20O4. OECD Guideline for the Testing of Chemicals. Test No. 202: Daphnia sp., Acute Immobilisation Test and Reproduction, Paris, France.
27. Piccinno F., Gottschalk F., Seeger S., Nowack B., 2012. Industrial production quantities and uses of ten engineered nanomaterials for Europe and the world. Journal of Nanoparticle Research, 14: 1109-1120.
28. Prabhu S., Poulose E. K., 2012. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. International Nano Letters, 2: 32.
29. Rahman Nia J., 2009. Preparation of colloidal nanosilver. US Patent application docket 20090013825, 15 January 2009.
30. Rajeshkumar S., Malarkodi C., Gnanajobitha G., Paulkumar K., Vanaja M., Kannan C., Annadurai G., 2013. Seaweed-mediated synthesis of gold nanoparticles using Turbinaria conoides and its characterization. Journal of Nanostructure in Chemistry, 3: 44.
31. Reynolds G.H., 2001. Environmental Regulation of Nanotechnology: Some Preliminary Observations, Nano Archive 31, 10681-10688.
32. Senapati S., Syde A., Moeez S., Kumar A., Ahmah A., 2012. Intracellular synthesis of gold nanoparticles using alga Tetraselmis kochinensis. Materials Letters, 79: 116-118.
33. Sharma K., Yngard R.A., Lin Y., 2009. Silver nanoparticles: green synthesis and their antimicrobial activities, Advances in Colloid and Interface Science, 145: 83-96.
34. Sorgeloos P., Dehert P., Candreva P., 2001. Use of the brine shirinp, Artemia spp., in marine fish larviculture, Aquaculture, 200: 147-759.
35. Tolstoshev A., 2006. Nanotechnology, assessing the environmental risks for Australia, 1nd edition. Earth Policy Centre. PP. 317.
36. UN United Nation. 2009. Globally harmonized system of classification and labelling of chemicals (GHS), New York and Geneva.
37. Wang J., Wang W.X., 2014. Low Bioavailability of Silver Nanoparticles Presents Trophic Toxicity to Marine Medaka (Oryzias melastigma). Environmental Science and Technology, 48: 8152−8161.
38. Wiesner M.R., Lowry G.V., Jones K.L., Hochella Jr. M.F., Di Giulio R.T., Casman E., Bernhardt E.S., 2009. Decreasing uncertainties in assessing environmental exposure, risk and ecological implications of nanomaterials. Environmental Science and Technology, 43: 6458-6462.
39. Yousefzadi M., Rahimi Z., Ghafori V., 2014. The greensynthesis, characterization and antimicrobial activities of silver nanoparticles synthesized from green alga Enteromorpha flexuosa (wulfen) J.Agardh. Materials Letters, 137: 1-4.