فهرس المقالات Abouzar Rezaei-Baravati


  • المقاله

    1 - Effect of Fluoride Coating on the Degradation of Mg-Based Alloy Containing Calcium for Biomedical Applications
    Journal of Advanced Materials and Processing , العدد 1 , السنة 10 , زمستان 2022
    The effect of hydrofluoric acid (HF) treatment on the corrosion performance of the Mg–Zn–Al–0.5Ca alloy was studied by immersing a specimen in HF solutions for varying lengths of time at room temperature. X-ray diffraction (XRD), scanning electron micr أکثر
    The effect of hydrofluoric acid (HF) treatment on the corrosion performance of the Mg–Zn–Al–0.5Ca alloy was studied by immersing a specimen in HF solutions for varying lengths of time at room temperature. X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to study the evolution of microstructures. In vitro corrosion resistance was assessed using potentiodynamic polarization and a room-temperature immersion test in Kokubo solution. The fluoride-treated Mg–Zn–Al–0.5Ca alloy formed by 24h immersion in HF exhibited a more homogeneous, compact, and thicker (2.1 μm) coating layer compared to the other HF treated specimens in 6, 12 and 18 hours. The corrosion resistance performance of the Mg–Zn–Al–0.5Ca alloy formed by 24h immersion in HF was the best, with a corrosion rate of 2.87 mm/y according to the electrochemical experiment. The mean weight loss of the untreated samples was more considerably higher (up to 2 times) than that of the fluoride-treated alloys, according to in vitro degradation assessments. According to the findings because of its low degradation kinetics and apatite formation ability, the fluoride-treated Mg–Zn–Al–0.5Ca alloy is a promising candidate for biodegradable implants. تفاصيل المقالة