بهینهسازی تولید اسیدسیتریک از گونه قارچی آسپرژیلوس نایجر
الموضوعات :
حمیدرضا صمدلوئی
1
,
شاهرخ قرنجیک
2
1 - استادیار گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه صنعتی شاهرود، شاهرود، ایران
2 - استادیار گروه پژوهشی بیوتکنولوژی، دانشکده کشاورزی، دانشگاه صنعتی شاهرود، شاهرود، ایران
تاريخ الإرسال : 05 الأربعاء , محرم, 1436
تاريخ التأكيد : 28 الأحد , ذو الحجة, 1436
تاريخ الإصدار : 10 الأحد , صفر, 1437
الکلمات المفتاحية:
اسید سیتریک,
آسپرژیلوس نایجر,
بهینهسازی و سطح پاسخ,
ملخص المقالة :
اسید سیتریک بهطور عمده توسطگونههای کپکی آسپرژیلوس نایجر و با استفاده از روش تخمیر حالت مایع تولید میگردد. در این تحقیق بهینهسازی تولید اسید سیتریک از گونه قارچی آسپرژیلوس نایجر به روش One factor at timeو سپس با استفاده از روش سطح پاسخبا استفاده از تخمیر حالت مایعانجام شد. نتایج روش One factor at time نشان داد که میزان اسید سیتریک با افزایش دور همزن از 150 به 200 دور در دقیقه، دما از 17 به 32 درجه سلسیوس و کاهش pHبه 2، افزایش یافت و تیمارهای حاوی سویا و عناصر معدنی نسبت به بقیه تیمارها تأثیر قابلتوجهی در افزایش تولید اسید سیتریک (حدود 25 گرم در لیتر) داشتند. همچنین نتایج نشان داد که امواج اولتراسونیک در زمان رشد میکروارگانیسم تأثیر قابلتوجهی در افزایش اسید سیتریک داشته است. آزمون آماری سطح پاسخ نشان داد که بیشترین میزان تولید اسید سیتریک (58 گرم در لیتر) در سطوح 87/230 گرم در لیتر ساکارز و 200 گرم در لیتر پودر سویا تولید شد. با توجه به نتایج بهدست آمده افزایش قابلتوجه تولید اسید سیتریک در شرایط بهینه نسبت به شرایط اولیه تخمیر نشاندهنده روش آماری مناسب به منظور بهینهسازی و انتخاب صحیح متغیرهای اعمالی و سطوح استفاده شده میباشد.
المصادر:
موسوینسب، مرضیه و دارابزاده، نازنین (1389). تولید میکروبی لایزین با استفاده از آب پنیر و ملاس. نشریه پژوهشهای علوم و صنایع غذایی ایران، دوره 6، شماره 2 صفحات: 104- 101 .
Benuzzi, D.A. and Segovia, R.F. (1996). Effect of the copper concentration on citric acid productivity by an Aspergillus niger strain. Biochemistry and biotechnology, 61(3): 93-397.
Bochu, W., Lanchun, S., Jing, Z., Yuanyuan, Y. and Yanhong, Y. (2003). The influence of Ca on the proliferation of S. cerevisiae and low ultrasonic on the concentration of Ca2+ in the S. cerevisiae cells, Colloids and Surfaces B: Biointerfaces, 32: 35–42.
Brock,T.D. and Adigan,T.M. (1994). Microbial Biotechnology. McGraw Hill Company, USA, p. 377.
El-Holi, M.A. and Al-Delaimy, K.S. (2003). Citric acid production from whey with sugars and additives by Aspergillus niger, African Journal of Biotechnology, 2: 356–359.
El-Hussein, A.A., Tawfig, S.A.M., Mohammed, S.G., Siddig M.A.E. and Siddig, A.M. (2009). Citric acid production from kenana cane molasses by Aspergillus niger in submerged fermentation. Journal of genetic engineering and biotechnology, 7(2): 51-57.
Jomdecha, C., Prateepasen, A. (2006). The research of low ultrasonic energy affects to yeast growth fermentation process. Asia-Pacific Conference on NDT, 5th – 10th Nov 2006, Auckland, New Zealand
Hang, Y.D. and Woodams E.E. (1984). Apple pomace: a potential substrate for citric acid production by Aspergillus niger. Biotechnology Letters, 5: 763-764.
Iqba. J., Haq. I.U., Javed. M.M., Hameed. U., Khan. A.M., Parveen. N., et al. (2015). Isolation of Aspergillus niger strains from soil and their screening and optimization for enhanced citric acid production using cane molasses as carbon source, Journal of Applied Environmental and Biological Sciences, 5(4): 128-137
Kristiansen, B. and Sinclair, C.G. (1978). Production of citric acid in batch culture. Biotechnology and Bioengineering, 20: 1711-1722.
Lanchun, S., Bochu, W., Lianchai, Z., Jie, L., Yanhong, Y. and Chuanren, D. (2003). The influence of low intensity ultrasonic on some physiological characteristics of Saccharomyces cerevisiae, Colloids and Surfaces B: Biointerfaces, 30: 61–66.
Lotfy. W.A. Ghanem. K.M. and El-Helow. E.R. (2007). Citric acid production by a novel Aspergillus nigerisolate: II. Optimization of process parameters through statistical experimental designs. Bioresource Technology, 98: 3470–3477.
Majumder, L. Khalil. I. and Munshi. M.K. (2010). Citric acid production by Aspergillus niger using molasses and pumpkin as substrates. EuropeanJournal of Biological Sciences, 2: 1–8.
Marier, I.R. and Boulet, M. (1958). Direct determination of citric acid in milk with an improved pyridine-acetic anhydride method. Journal of Dairy Science, 41: 1683-92.
Moosavi Nasab, M. and Darabzadeh, N. (2010). Microbial production of lysine using whey permeate and molasses, Iranian Food Science and Technology Research Journal, 6(2): 104-101. [in Persian]
Papagianni, M. and Mattey, M. (2004). Modeling the mechanisms of glucose transport through the cell membrane of Aspergillus niger in submerged citric acid fermentation processes. Biochemical Engineering Journal, 20: 7–12.
Papagianni, M. (2007). Advances in citric acid fermentation by Aspergillus niger Biochemical aspects, membrane transport and modeling. Biotechnology Advances, 25: 244–263.
Sakuradani, E., Hirano, Y., Kamada, N., Nojiri, M., Ogawa, J. and Shimizu, S. (2004). Improvement of arachidonic acid production by mutants with lower n-3 desaturation activity derived from Mortierella alpina 1S-4. Applied Microbiology and Biotechnology, 66: 243–248.
Singh, A. and Ward, O.P. (1997). Production of high yields of arachidonic acid in a fed-batch system by Mortierella alpina ATCC 32222. Apply Microbiology Biotechnology, 48: 1–5.
Steinbock, F.A., Held, S. Choojun, H. Harmsen, M. Kubicek-pranz, E.M. and Kubicek, CP. (1991). Regulatory aspect of carbohydrate metabolism in relation to citric acid accumulation by Aspergillus niger. Acta Biotechnol, 11: 571-581.
Strobel, R.J. and Sullivan, G.R. (1999). Experimental design for improvement of fermentations. In: Manual of industrial Microbiology and Biotechnology, Demain, A.L. and Davies, J.E. Editors., ASM Press, Washington, DC, pp. 80-93.
Sukesh, K., Jayasuni, J.S., Goku, C.N. and Anu, V. (2013). Citric acid production from agronomic waste using Aspergillus niger isolated from decayed fruit. Journal of Chemical, Biological and Physical Sciences, 3(2): 1572-1576
Samson, R.A., Houbraken, J., Summerbe, R.C., Flannigan, B. and Miller, J.D. (2001). Microogranisms in home and indoor work environments.Taylor and Francis, NewYork, p. 348.
Resa, P., Bolumar, T., Pérez, G. and Espinosa, F.M.d. (2007). Monitoring of lactic acid fermentation in culture broth using ultrasonic velocity. Journal of Food Engineering, 78(3): 1083–1091
Rohr, M., Zehentgruber, O. and Kubicek, C.P. (1981). Kinetics of biomass formation and citric acid production by Aspergillus niger on pilot plant scale. Biotechnology and Bioengineering, 23: 2433–45.
Vaishnavi, R., Chairman, K., Ranjit Singh, A.J.A., Ramesh, S. and Viswanathan, S. (2012). Screening the effect of bagasse—an agro waste for the production of citric acid using Aspergillus niger through solid state fermentation. Bioscience Methods, 3: 48–54.
Wang, Z.M., Cheung, Y.C., Leung, P.H. and Wu, J.Y. (2010). Ultrasonic treatment for improved solution properties of a high-molecular weight exopolysaccharide produced by a medicinal fungus. Bioresource Technology, 101(14): 5517-22.
Xu, B.D., Madrit, C., Röhr, M. and Kubicek, C.P. (1989).The influence of type and concentration of the carbon source on production of citric acid by Aspergillus niger. Applied Microbiology and Biotechnology, 30: 553–8.
Zhu, M., Yu, L.J. and Wu, YX. (2003). An inexpensive medium for production of arachidonic acid by Mortierella alpina. Journal of Industrial Microbiology and Biotechnology, 30: 75–79.
_||_
Benuzzi, D.A. and Segovia, R.F. (1996). Effect of the copper concentration on citric acid productivity by an Aspergillus niger strain. Biochemistry and biotechnology, 61(3): 93-397.
Bochu, W., Lanchun, S., Jing, Z., Yuanyuan, Y. and Yanhong, Y. (2003). The influence of Ca on the proliferation of S. cerevisiae and low ultrasonic on the concentration of Ca2+ in the S. cerevisiae cells, Colloids and Surfaces B: Biointerfaces, 32: 35–42.
Brock,T.D. and Adigan,T.M. (1994). Microbial Biotechnology. McGraw Hill Company, USA, p. 377.
El-Holi, M.A. and Al-Delaimy, K.S. (2003). Citric acid production from whey with sugars and additives by Aspergillus niger, African Journal of Biotechnology, 2: 356–359.
El-Hussein, A.A., Tawfig, S.A.M., Mohammed, S.G., Siddig M.A.E. and Siddig, A.M. (2009). Citric acid production from kenana cane molasses by Aspergillus niger in submerged fermentation. Journal of genetic engineering and biotechnology, 7(2): 51-57.
Jomdecha, C., Prateepasen, A. (2006). The research of low ultrasonic energy affects to yeast growth fermentation process. Asia-Pacific Conference on NDT, 5th – 10th Nov 2006, Auckland, New Zealand
Hang, Y.D. and Woodams E.E. (1984). Apple pomace: a potential substrate for citric acid production by Aspergillus niger. Biotechnology Letters, 5: 763-764.
Iqba. J., Haq. I.U., Javed. M.M., Hameed. U., Khan. A.M., Parveen. N., et al. (2015). Isolation of Aspergillus niger strains from soil and their screening and optimization for enhanced citric acid production using cane molasses as carbon source, Journal of Applied Environmental and Biological Sciences, 5(4): 128-137
Kristiansen, B. and Sinclair, C.G. (1978). Production of citric acid in batch culture. Biotechnology and Bioengineering, 20: 1711-1722.
Lanchun, S., Bochu, W., Lianchai, Z., Jie, L., Yanhong, Y. and Chuanren, D. (2003). The influence of low intensity ultrasonic on some physiological characteristics of Saccharomyces cerevisiae, Colloids and Surfaces B: Biointerfaces, 30: 61–66.
Lotfy. W.A. Ghanem. K.M. and El-Helow. E.R. (2007). Citric acid production by a novel Aspergillus nigerisolate: II. Optimization of process parameters through statistical experimental designs. Bioresource Technology, 98: 3470–3477.
Majumder, L. Khalil. I. and Munshi. M.K. (2010). Citric acid production by Aspergillus niger using molasses and pumpkin as substrates. EuropeanJournal of Biological Sciences, 2: 1–8.
Marier, I.R. and Boulet, M. (1958). Direct determination of citric acid in milk with an improved pyridine-acetic anhydride method. Journal of Dairy Science, 41: 1683-92.
Moosavi Nasab, M. and Darabzadeh, N. (2010). Microbial production of lysine using whey permeate and molasses, Iranian Food Science and Technology Research Journal, 6(2): 104-101. [in Persian]
Papagianni, M. and Mattey, M. (2004). Modeling the mechanisms of glucose transport through the cell membrane of Aspergillus niger in submerged citric acid fermentation processes. Biochemical Engineering Journal, 20: 7–12.
Papagianni, M. (2007). Advances in citric acid fermentation by Aspergillus niger Biochemical aspects, membrane transport and modeling. Biotechnology Advances, 25: 244–263.
Sakuradani, E., Hirano, Y., Kamada, N., Nojiri, M., Ogawa, J. and Shimizu, S. (2004). Improvement of arachidonic acid production by mutants with lower n-3 desaturation activity derived from Mortierella alpina 1S-4. Applied Microbiology and Biotechnology, 66: 243–248.
Singh, A. and Ward, O.P. (1997). Production of high yields of arachidonic acid in a fed-batch system by Mortierella alpina ATCC 32222. Apply Microbiology Biotechnology, 48: 1–5.
Steinbock, F.A., Held, S. Choojun, H. Harmsen, M. Kubicek-pranz, E.M. and Kubicek, CP. (1991). Regulatory aspect of carbohydrate metabolism in relation to citric acid accumulation by Aspergillus niger. Acta Biotechnol, 11: 571-581.
Strobel, R.J. and Sullivan, G.R. (1999). Experimental design for improvement of fermentations. In: Manual of industrial Microbiology and Biotechnology, Demain, A.L. and Davies, J.E. Editors., ASM Press, Washington, DC, pp. 80-93.
Sukesh, K., Jayasuni, J.S., Goku, C.N. and Anu, V. (2013). Citric acid production from agronomic waste using Aspergillus niger isolated from decayed fruit. Journal of Chemical, Biological and Physical Sciences, 3(2): 1572-1576
Samson, R.A., Houbraken, J., Summerbe, R.C., Flannigan, B. and Miller, J.D. (2001). Microogranisms in home and indoor work environments.Taylor and Francis, NewYork, p. 348.
Resa, P., Bolumar, T., Pérez, G. and Espinosa, F.M.d. (2007). Monitoring of lactic acid fermentation in culture broth using ultrasonic velocity. Journal of Food Engineering, 78(3): 1083–1091
Rohr, M., Zehentgruber, O. and Kubicek, C.P. (1981). Kinetics of biomass formation and citric acid production by Aspergillus niger on pilot plant scale. Biotechnology and Bioengineering, 23: 2433–45.
Vaishnavi, R., Chairman, K., Ranjit Singh, A.J.A., Ramesh, S. and Viswanathan, S. (2012). Screening the effect of bagasse—an agro waste for the production of citric acid using Aspergillus niger through solid state fermentation. Bioscience Methods, 3: 48–54.
Wang, Z.M., Cheung, Y.C., Leung, P.H. and Wu, J.Y. (2010). Ultrasonic treatment for improved solution properties of a high-molecular weight exopolysaccharide produced by a medicinal fungus. Bioresource Technology, 101(14): 5517-22.
Xu, B.D., Madrit, C., Röhr, M. and Kubicek, C.P. (1989).The influence of type and concentration of the carbon source on production of citric acid by Aspergillus niger. Applied Microbiology and Biotechnology, 30: 553–8.
Zhu, M., Yu, L.J. and Wu, YX. (2003). An inexpensive medium for production of arachidonic acid by Mortierella alpina. Journal of Industrial Microbiology and Biotechnology, 30: 75–79.