اثر پلاسمای سرد اتمسفری بر میزان رشد و قدرت تشکیل بیوفیلم در استافیلوکوکوس اورئوسهای جداشده از شیر گاو مبتلا به ورم پستان
الموضوعات :
فرهاد جهاندیده
1
,
جلال شایق
2
,
سمیه حسین زاده
3
1 - دانشآموخته دکتری حرفهای دامپزشکی، واحد شبستر، دانشگاه آزاد اسلامی، شبستر، ایران
2 - استادیار گروه دامپزشکی، واحد شبستر، دانشگاه آزاد اسلامی، شبستر، ایران
3 - استادیار گروه دامپزشکی، واحد شبستر، دانشگاه آزاد اسلامی، شبستر، ایران
تاريخ الإرسال : 04 الأحد , ربيع الثاني, 1441
تاريخ التأكيد : 05 الخميس , جمادى الثانية, 1441
تاريخ الإصدار : 25 الجمعة , رجب, 1441
الکلمات المفتاحية:
استافیلوکوکوس اورئوس,
بیوفیلم,
شیر,
پلاسمای سرد اتمسفری,
تخلیه سد دیالکتریک,
ملخص المقالة :
استافیلوکوکوس اورئوس بهعنوان یکی از باکتری های مهم بیماری زا در صنعایع شیر است که قادر به تولید بیوفیلم می باشد. بیوفیلم تولید شده توسط این باکتری باعث مقاومت آن در برابر عوامل ضدمیکروبی میگردد. غیرفعال کردن میکروارگانیسم ها با استفاده از پلاسمای سرد اتمسفری یکی از روش های جدید در صنعایع غذایی می باشد. در این مطالعه جهت بررسی اثر ضدباکتریایی و ضدبیوفیلمی پلاسمای سرد اتمسفری، از دستگاه تخلیه سد دیالکتریک استفاده شد. تعداد 20 جدایه استافیلوکوکوس اورئوس بهدستآمده از شیر گاوهای مبتلا به ورمپستان بالینی، در بازه های زمانی 5 تا 20 ثانیه در معرض پلاسما قرارگرفت و اثر ضدباکتریایی آن با اندازه گیری قطر هاله مهار رشد محاسبه شد. برای ارزیابی اثرات ضدبیوفیلمی، جدایه ها بهمدت 5 ثانیه تحت تیمار با پلاسما قرار گرفتند و پس از 24 ساعت میزان تشکیل بیوفیلم بررسی شد. نتایج نشان داد که با افزایش زمان شارش پلاسما بر جدایه ها، کاهش قابلتوجهی در میزان رشد باکتری ها مشاهده میشود. همچنین آنالیز آماری نتایج حاصل از الایزا ریدر نشان داد که در معرض قرارگیری جدایه ها با پلاسما بهطور معنی داری (p < 0.05)باعث کاهش تولید بیوفیلم شده است. این نتایج حاکی از آن است که پلاسما می تواند جایگزین مناسبی برای روش های آلودگی زدایی حرارتی باشد. با اینحال، کاربرد آن مستلزم انجام مطالعات بیشتر با هدف تعیین شدت و مدتزمان مواجهه میکروارگانیسم ها با پلاسما است.
المصادر:
· Batavani, R.A., Asri, S. and Naebzadeh, H. (2007). The effect of subclinical mastitis on milk composition in dairy cows. Iranian Journal of Veterinary Research, 8(3): 205-211.
· Brakstad, O.G., Aasbakk, K. and Maeland, J.A. (1992). Detection of Staphylococcus aureus by polymerase chain reaction amplification of the nuc gene. Journal of Clinical Microbiology, 30(7): 1654-1660.
· Cahill, O. J., Claro, T., O’Connor, N., Cafolla, A. A., Stevens, N. T., Daniels, S. et al., (2014). Cold air plasma to decontaminate inanimate surfaces of the hospital environment. Applied and Environal Microbiology, 80(6): 2004–2010.
· Chen, D., Zhao, T. and Doyle, M.P. (2015). Control of pathogens in biofilms on the surface of stainless steel by levulinic acid plus sodium dodecyl sulfate. International Journal of Food Microbiology, 207: 1-7.
· Daeschlein, G., Scholz, S., Arnold, A., von Podewils, S., Haase, H., Emmert, S. et al., (2012). In vitro susceptibility of important skin and wound pathogens against low temperature atmospheric pressure plasma jet (APPJ) and dielectric barrier discharge plasma (DBD). Plasma Processes and Polymers, 9(4): 380-389.
· Dai, J., Wu, S., Huang, J., Wu, Q., Zhang, F., Zhang, J. et al., (2019). Prevalence and characterization of Staphylococcus aureus isolated from pasteurized milk in china. Frontiers in Microbiology. 10: 641-641.
· Ebrahimzadeh, K. and Hanifian, S. (2017). Contamination rate, antibiotic susceptibility profile, biofilm formation and presence of TSST-1 gene in Staphylococcus aureus strains. Journal of Food Hygiene, 6(4): 1-15. [In Persian]
· Fernandez, A., Shearer, N., Wilson, D.R. and Thompson, A. (2012). Effect of microbial loading on the efficiency of cold atmospheric gas plasma inactivation of Salmonella enterica serovar Typhimurium. International Journal of Food Microbiology, 152(3): 175-180.
· Gajdács, M. (2019). The Continuing threat of methicillin-resistant Staphylococcus aureus. Antibiotics (Basel), 8(2): 52.
· Hamad, R.H.Ȧ. and Mahmood, M.A. (2013). Deactivation of Staphylococcus aureus and Escherichia coli using plasma needle at atmospheric pressure. International Journal of Engineering and Technology, 3(5): 1848-1852.
· Haug, A., Høstmark, A.T. and Harstad, O.M. (2007). Bovine milk in human nutrition-a review. Lipids in Health and Disease, 6: 25-25.
· Jamal, M., Ahmad, W., Andleeb, S., Jalil, F., Imran, M., Nawaz, M.A. et al., (2018). Bacterial biofilm and associated infections. Journal of the Chinese Medical Association, 81(1): 7-11.
· Jiang, C., Schaudinn, C., Jaramillo, D.E., Webster, P. and Costerton, J.W. (2012). In vitro antimicrobial effect of a cold plasma jet against enterococcus faecalis biofilms. International Scholarly Research Notices Dentistry, 295736.
· Joshi, S. G., Paff, M., Friedman, G., Fridman, A. and Brooks, A. D. (2010). Control of methicillin-resistant Staphylococcus aureus in planktonic form and biofilms: A biocidal efficacy study of nonthermal dielectric-barrier discharge plasma. American Journal of Infection Control, 38(4): 293-301.
· Langsrud, S. (2009). Biofilm formation by Gram-positive bacteria including Staphylococcus aureus, Mycobacterium avium and Enterococcus spp. in food processing environments, Woodhead Publishing Ltd, Cambridge, pp. 250-269.
· Mai-Prochnow, A., Clauson, M., Hong, J., Murphy, A.B. (2016). Gram positive and Gram negative bacteria differ in their sensitivity to cold plasma. Scientific Reports, 6: 38610.
· Marchand, S., De Block, J., De Jonghe, V., Coorevits, A., Heyndrickx, M. and Herman, L. (2012). Biofilm formation in milk production and processing environments; influence on milk quality and safety. Comprehensive Reviews in Food Science and Food Safety, 11(2): 133-147.
· Mirzaei, H., Javadi, A., Farajli, M., Shah-Mohammadi, A.R., Monadi, A.R. and Barzegar, A. (2012). Prevalence of Staphylococcus aureus resistant to methicillin in traditional cheese and cream: a study in city of Tabriz, Iran. Journal of Veterinary Research, 67(1): 65-70. [In Persian]
· Mishra, R., Bhatia, S., Pal, R., Visen, A. and Trivedi, H. (2016). Cold plasma: emerging as the new standard in food safety. International Journal of Engineering and Science, 6 (2): 15-20.
· Noriega, E., Shama, G., Laca, A., Diaz, M. and Kong, M.G. (2011). Cold atmospheric gas plasma disinfection of chicken meat and chicken skin contaminated with Listeria innocua. Food Microbiology, 28(7): 1293-1300.
· Olatunde, O.O., Benjakul, S. and Vongkamjan, K. (2019). Dielectric barrier discharge cold atmospheric plasma: Bacterial inactivation mechanism. Journal of Food Safety, e12705.
· Pereyra, E.A., Picech, F., Renna, M.S., Baravalle, C., Andreotti, C.S., Russi, R. et al., (2016). Detection of Staphylococcus aureus adhesion and biofilm-producing genes and their expression during internalization in bovine mammary epithelial cells. Veterinary Microbiology, 183: 69-77.
· Razuqi, N., Muftin, F., Murbat, H. and Abdalameer, N. (2017). Influence of dielectric-barrier discharge (DBD) cold plasma on water contaminated bacteria. Annual Research & Review in Biology, 14: 1-9.
· Rola, J.G., Sosnowski, M., Ostrowska, M. and Osek, J. (2015). Prevalence and antimicrobial resistance of coagulase-positive staphylococci isolated from raw goat milk. Small Ruminant Research, 123(1): 124-128.
· Saba, V., Ramazani, K. and Hashemi, H. (2013). Bacterial sterilization using dielectric barrier discharge plasma in atmoshpheric pressure. Journal of Army University of Medical Sciences, 11(3): 196-199. [In Persian]
· Tasse, J., Trouillet-Assant, S., Josse, J., Martins-Simões, P., Valour, F., Langlois-Jacques, C. et al., (2018). Association between biofilm formation phenotype and clonal lineage in Staphylococcus aureus strains from bone and joint infections. PLoS One, 13(8): e0200064-e0200064.
· Ulbin-Figlewicz, N., Jarmoluk, A. and Marycz, K. (2015). Antimicrobial activity of low-pressure plasma treatment against selected foodborne bacteria and meat microbiota. Annals of Microbiology, 65(3): 1537-1546.
· Van Houdt, R. and Michiels, C.W. (2010). Biofilm formation and the food industry, a focus on the bacterial outer surface. Journal of Applied Microbiology, 109(4): 1117-1131.
· Wendlandt, S., Schwarz, S. and Silley, P. (2013). Methicillin-resistant Staphylococcus aureus: a food-borne pathogen. Annual Review of Food Science and Technology, 4: 117-139.
· Xing, X., Zhang, Y., Wu, Q., Wang, X., Ge, W. and Wu, C. (2016). Prevalence and characterization of Staphylococcus aureus isolated from goat milk powder processing plants. Food Control, 59: 644-650.
· Ziuzina, D., Boehm, D., Patil, S., Cullen, P.J. and Bourke, P. (2015). Cold plasma inactivation of bacterial biofilms and reduction of quorum sensing regulated virulence factors. PLoS One, 10(9): e0138209-e0138209.
_||_
· Batavani, R.A., Asri, S. and Naebzadeh, H. (2007). The effect of subclinical mastitis on milk composition in dairy cows. Iranian Journal of Veterinary Research, 8(3): 205-211.
· Brakstad, O.G., Aasbakk, K. and Maeland, J.A. (1992). Detection of Staphylococcus aureus by polymerase chain reaction amplification of the nuc gene. Journal of Clinical Microbiology, 30(7): 1654-1660.
· Cahill, O. J., Claro, T., O’Connor, N., Cafolla, A. A., Stevens, N. T., Daniels, S. et al., (2014). Cold air plasma to decontaminate inanimate surfaces of the hospital environment. Applied and Environal Microbiology, 80(6): 2004–2010.
· Chen, D., Zhao, T. and Doyle, M.P. (2015). Control of pathogens in biofilms on the surface of stainless steel by levulinic acid plus sodium dodecyl sulfate. International Journal of Food Microbiology, 207: 1-7.
· Daeschlein, G., Scholz, S., Arnold, A., von Podewils, S., Haase, H., Emmert, S. et al., (2012). In vitro susceptibility of important skin and wound pathogens against low temperature atmospheric pressure plasma jet (APPJ) and dielectric barrier discharge plasma (DBD). Plasma Processes and Polymers, 9(4): 380-389.
· Dai, J., Wu, S., Huang, J., Wu, Q., Zhang, F., Zhang, J. et al., (2019). Prevalence and characterization of Staphylococcus aureus isolated from pasteurized milk in china. Frontiers in Microbiology. 10: 641-641.
· Ebrahimzadeh, K. and Hanifian, S. (2017). Contamination rate, antibiotic susceptibility profile, biofilm formation and presence of TSST-1 gene in Staphylococcus aureus strains. Journal of Food Hygiene, 6(4): 1-15. [In Persian]
· Fernandez, A., Shearer, N., Wilson, D.R. and Thompson, A. (2012). Effect of microbial loading on the efficiency of cold atmospheric gas plasma inactivation of Salmonella enterica serovar Typhimurium. International Journal of Food Microbiology, 152(3): 175-180.
· Gajdács, M. (2019). The Continuing threat of methicillin-resistant Staphylococcus aureus. Antibiotics (Basel), 8(2): 52.
· Hamad, R.H.Ȧ. and Mahmood, M.A. (2013). Deactivation of Staphylococcus aureus and Escherichia coli using plasma needle at atmospheric pressure. International Journal of Engineering and Technology, 3(5): 1848-1852.
· Haug, A., Høstmark, A.T. and Harstad, O.M. (2007). Bovine milk in human nutrition-a review. Lipids in Health and Disease, 6: 25-25.
· Jamal, M., Ahmad, W., Andleeb, S., Jalil, F., Imran, M., Nawaz, M.A. et al., (2018). Bacterial biofilm and associated infections. Journal of the Chinese Medical Association, 81(1): 7-11.
· Jiang, C., Schaudinn, C., Jaramillo, D.E., Webster, P. and Costerton, J.W. (2012). In vitro antimicrobial effect of a cold plasma jet against enterococcus faecalis biofilms. International Scholarly Research Notices Dentistry, 295736.
· Joshi, S. G., Paff, M., Friedman, G., Fridman, A. and Brooks, A. D. (2010). Control of methicillin-resistant Staphylococcus aureus in planktonic form and biofilms: A biocidal efficacy study of nonthermal dielectric-barrier discharge plasma. American Journal of Infection Control, 38(4): 293-301.
· Langsrud, S. (2009). Biofilm formation by Gram-positive bacteria including Staphylococcus aureus, Mycobacterium avium and Enterococcus spp. in food processing environments, Woodhead Publishing Ltd, Cambridge, pp. 250-269.
· Mai-Prochnow, A., Clauson, M., Hong, J., Murphy, A.B. (2016). Gram positive and Gram negative bacteria differ in their sensitivity to cold plasma. Scientific Reports, 6: 38610.
· Marchand, S., De Block, J., De Jonghe, V., Coorevits, A., Heyndrickx, M. and Herman, L. (2012). Biofilm formation in milk production and processing environments; influence on milk quality and safety. Comprehensive Reviews in Food Science and Food Safety, 11(2): 133-147.
· Mirzaei, H., Javadi, A., Farajli, M., Shah-Mohammadi, A.R., Monadi, A.R. and Barzegar, A. (2012). Prevalence of Staphylococcus aureus resistant to methicillin in traditional cheese and cream: a study in city of Tabriz, Iran. Journal of Veterinary Research, 67(1): 65-70. [In Persian]
· Mishra, R., Bhatia, S., Pal, R., Visen, A. and Trivedi, H. (2016). Cold plasma: emerging as the new standard in food safety. International Journal of Engineering and Science, 6 (2): 15-20.
· Noriega, E., Shama, G., Laca, A., Diaz, M. and Kong, M.G. (2011). Cold atmospheric gas plasma disinfection of chicken meat and chicken skin contaminated with Listeria innocua. Food Microbiology, 28(7): 1293-1300.
· Olatunde, O.O., Benjakul, S. and Vongkamjan, K. (2019). Dielectric barrier discharge cold atmospheric plasma: Bacterial inactivation mechanism. Journal of Food Safety, e12705.
· Pereyra, E.A., Picech, F., Renna, M.S., Baravalle, C., Andreotti, C.S., Russi, R. et al., (2016). Detection of Staphylococcus aureus adhesion and biofilm-producing genes and their expression during internalization in bovine mammary epithelial cells. Veterinary Microbiology, 183: 69-77.
· Razuqi, N., Muftin, F., Murbat, H. and Abdalameer, N. (2017). Influence of dielectric-barrier discharge (DBD) cold plasma on water contaminated bacteria. Annual Research & Review in Biology, 14: 1-9.
· Rola, J.G., Sosnowski, M., Ostrowska, M. and Osek, J. (2015). Prevalence and antimicrobial resistance of coagulase-positive staphylococci isolated from raw goat milk. Small Ruminant Research, 123(1): 124-128.
· Saba, V., Ramazani, K. and Hashemi, H. (2013). Bacterial sterilization using dielectric barrier discharge plasma in atmoshpheric pressure. Journal of Army University of Medical Sciences, 11(3): 196-199. [In Persian]
· Tasse, J., Trouillet-Assant, S., Josse, J., Martins-Simões, P., Valour, F., Langlois-Jacques, C. et al., (2018). Association between biofilm formation phenotype and clonal lineage in Staphylococcus aureus strains from bone and joint infections. PLoS One, 13(8): e0200064-e0200064.
· Ulbin-Figlewicz, N., Jarmoluk, A. and Marycz, K. (2015). Antimicrobial activity of low-pressure plasma treatment against selected foodborne bacteria and meat microbiota. Annals of Microbiology, 65(3): 1537-1546.
· Van Houdt, R. and Michiels, C.W. (2010). Biofilm formation and the food industry, a focus on the bacterial outer surface. Journal of Applied Microbiology, 109(4): 1117-1131.
· Wendlandt, S., Schwarz, S. and Silley, P. (2013). Methicillin-resistant Staphylococcus aureus: a food-borne pathogen. Annual Review of Food Science and Technology, 4: 117-139.
· Xing, X., Zhang, Y., Wu, Q., Wang, X., Ge, W. and Wu, C. (2016). Prevalence and characterization of Staphylococcus aureus isolated from goat milk powder processing plants. Food Control, 59: 644-650.
· Ziuzina, D., Boehm, D., Patil, S., Cullen, P.J. and Bourke, P. (2015). Cold plasma inactivation of bacterial biofilms and reduction of quorum sensing regulated virulence factors. PLoS One, 10(9): e0138209-e0138209.