Phytochemical study and anti-inflammatory activity of the roots of Mangifera indica L. in lipopolysaccharide (LPS)-stimulated peritoneal macrophages
الموضوعات :Yolande Nangue 1 , Eulogio José Llorent-Martínez 2 , Maria Luisa Fernández-de Córdova 3 , Douglas Alphonse M. Ngangoum 4 , Télesphore Benoit Nguelefack 5 , Anatole Guy Blaise Azebaze 6 , Alain Bertrand Dongmo 7
1 - Department of Chemistry, Faculty of Sciences, P.O. Box 24157, University of Douala, Cameroon
2 - Department of Physical and Analytical Chemistry, University of Jaén, Campus Las Lagunillas S/N, E-23071 Jaén, Spain
3 - Department of Physical and Analytical Chemistry, University of Jaén, Campus Las Lagunillas S/N, E-23071 Jaén, Spain
4 - Department of Animal Biology, Faculty of Sciences, P.O. Box 67, University of Dschang, Cameroon
5 - Department of Animal Biology, Faculty of Sciences, P.O. Box 67, University of Dschang, Cameroon
6 - Department of Chemistry, Faculty of Sciences, P.O. Box 24157, University of Douala, Cameroon
7 - Department of Animal Biology and Physiology, Faculty of Sciences, P.O. Box 24157, University of Douala, Cameroon
الکلمات المفتاحية: Cytotoxicity, nitric oxide, Anti-inflammatory, phenolic compounds, <i>Mangifera indica</i>,
ملخص المقالة :
This study deals with the identification of secondary metabolites of methanol extract of the roots of Mangifera indica L and the assessment of plant in vitro anti-inflammatory activity. High-performance liquid chromatography with electrospray ionization mass spectrometric detection (HPLC-ESI-MSn) using the negative ion mode was performed to establish the chromatographic fingerprint and identify various chemical components of the plant extract. The anti-inflammatory effect of the MeOH extract (3, 30 and 300 μg/mL) was assessed through cell viability and nitric oxide (NO) production on non-stimulated and LPS-stimulated peritoneal macrophages. Phytochemical analysis indicated the presence of a number of phenolic compounds where galloyl derivatives, mangiferin and its derivatives were the major constituents. The methanol extract exhibited significant concentration-dependent inhibitory effect on NO production, both on stimulated and non-stimulated macrophages. The concentration 300 μg/mL showed significant cell toxicity. The methanol extract of Mangifera indica is rich in phenolic compounds and possesses potent in vitro anti-inflammatory activity, but its higher concentrations are cytotoxic.
Aderibigbe, A.O., Emudianughe, T.S., Lawal, B.A., 1999. Antihyperglycaemic effect of Mangifera indica in rat. Phytother. Res. 13, 504-507.
Barreto, J.C., Trevisan, M.T.S., Hull. W.E., Erben, G., de Brito, E.S., Pfundstein, B., Würtele, G., Spiegelhalder, B., Owen, R.W., 2008. Characterization and quantitation of polyphenolic compounds in bark, kernel, leaves, and peel of Mango (Mangifera indica L.). J. Agric. Food Chem. 56, 5599-5610.
Baskaran, A., Chua, K.H., Sabaratnam, V., Ram, R.M., Kuppusamy, U.R., 2017. Pleurotus giganteus (Berk. Karun & Hyde), the giant oyster mushroom inhibits NO production in LPS/H2O2 stimulated RAW 264.7 cells via STAT 3 and COX-2 pathways. BMC Complement. Altern. Med. 17, 1-10. DOI 10.1186/s12906-016-1546-6
Boscá, L., Zeini, M., Través, P.G., Hortelano, S., 2005. Nitric oxide and cell viability in inflammatory cells: a role for NO in macrophage function and fate. Toxicology 208, 249-258.
Bulugonda, R.K., Kumar, K.A., Gangappa, D., Beeda, H., Philip, G.H., Rao, D.M., Faisal, S.M., 2017. Mangiferin from Puerariatuberosa reduces inflammation via inactivation of NLRP3 inflammasome. Sci. Rep. 7, DOI: 10.1038/srep42683
Cheng, B.C.Y., Ma, X.Q., Kwan, H.Y., Tse, K.W., Cao, H.H., Su, T., Shu. X., Wu, Z.Z., Yu, Z.L. 2014. A herbal formula consisting of Rosae Multiflorae Fructus and Lonicerae Japonicae Flos inhibits inflammatory mediators in LPS-stimulated RAW264.7 macrophages. J. Ethnopharmacol. 153, 922-927.
Cuschieri, J., Maier, R.V., 2007. Oxidative stress, lipid rafts, and macrophage reprogramming. Antioxid. Redox Signal. 9, 1485-1498.
Dorta, E., González, M., Lobo, M.G., Sánchez-Moreno, C., de Ancos, B., 2014. Screening of phenolic compounds in by-product extracts from mangoes (Mangifera indica L.) by HPLC-ESI-QTOF-MS and multivariate analysis for use as a food ingredient. Food Res. Int. 57, 51-60.
Farnsworth, N.R., Soejarto, D.D., 1991. Global importance of medicinal plants. In: Akerele, O., Heywood, V., Synge, H. (Eds.), Conservation of Medicinal Plants. Cambridge University Press, Cambridge, pp. 25-51.
Förstermann, U., 2010. Nitric oxide and oxidative stress in vascular disease. Pflug. Arch. Eur. J. Phy. 459, 923-939.
Frezza, C., Venditti, A., Serafini, I., Carassiti, A., Foddai, S., Bianco, A., Serafini, M., 2017. Phytochemical characteristics of Galeopsis ladanum subsp. angustifolia (Ehrh. ex Hoffm.) Gaudin collected in Abruzzo region (Central Italy) with chemotaxonomic and ethnopharmacological implications. Trends Phytochem. Res. 1(2), 61-68.
Garrido, G., González, D., Delporte, C., 2001. Analgesic and anti-inflammatory effects of Mangifera indica extract (Vimang). Phytother. Res. 15, 18-21.
Garrido, G., Gonzalez, D., Lemus, Y., Delporte, C., Delgado, R., 2006. Protective effects of a standard extract of Mangifera indica L. (VIMANG) against mouse ear edemas and its inhibition of eicosanoid production in J774 murine macrophages. Phytomedicine 13, 412-418.
Gómez-Caravaca, A.M., López-Cobo, A., Verardo, V., Segura-Carretero, A., Fernández-Gutiérrez, A., 2016. HPLC-DAD-q-TOF-MS as a powerful platform for the determination of phenolic and other polar compounds in the edible part of mango and its by-products (peel, seed, and seed husk). Electrophoresis 37, 1072-1084.
Justesen, U., 2000. Negative atmospheric pressure chemical ionisation low-energy collision activation mass spectrometry for the characterisation of flavonoids in extracts of fresh herbs. J. Chromatogr. A 902, 369-379.
Kanwal, Q., Hussain, I., Siddiqui, H.L., Javaid, A., 2010. Antifungal activity of flavonoids isolated from mango (Mangifera indica L.) leaves. Nat. Prod. Res. 24, 1907-1914.
Llorent-Martínez, E.J., Zengin, G., Lobine, D., Molina-García, L., Mollica, A., Mahomoodally, M.F., 2018. Phytochemical characterization, in vitro and in silico approaches for three Hypericum species. New J. Chem. 42, 5204-5214.
Lucas, K., Maes, M., 2013. Role of the Toll Like receptor (TLR) radical cycle in chronic inflammation: Possible treatments targeting the TLR4 pathway. Mol. Neurobiol. 48, 190-204.
Magne, F.A.L., Nguemfo, E.L., Djouatsa Nangue, Y., Bogning, Z.C., Fouokeng, Y., Azebaze, A.G.B., Llorent-Martínez, J.E., Fernández-de Córdova, M.L., Dongmo, A.B., Vierling, W., 2017. Antinociceptive and anti-inflammatory effects of the methanolic stem bark extract of Antrocaryon klaineanum Pierre (Anacardiaceae) in mice and rat. J. Ethnopharmacol. 203, 11-19.
Mämmelä, P., 2001. Phenolics in selected European hardwood species by liquid chromatography-electrospray ionisation mass spectrometry. Analyst 126, 1535-1538.
Marles, M.A.S., Gruber, M.Y., Scoles, G.J., Muir, A.D. 2003. Pigmentation in the developing seed coat and seedling leaves of Brassica carinata is controlled at the dihydroflavonol reductase locus. Phytochemistry 62, 663-672.
Masibo, M., He, Q., 2008. Major Mango Polyphenols and their potential significance to human health. Compr. Rev. Food Sci. Food Saf. 7, 309-319.
Mohammadhosseini, M., 2017. The ethnobotanical, phytochemical and pharmacological properties and medicinal applications of essential oils and extracts of different Ziziphora species. Ind. Crops Prod. 105, 164-192.
Mohammadhosseini, M., Sarker, S.D., Akbarzadeh, A., 2017. Chemical composition of the essential oils and extracts of Achillea species and their biological activities: A review. J. Ethnopharmacol. 199, 257-315.
Mohammadhosseini, M., Venditti, A., Sarker, S.D., Nahar, L., Akbarzadeh, A., 2019. The genus Ferula: Ethnobotany, phytochemistry and bioactivities - A review. Ind. Crops Prod. 129, 350-394.
Pardo-Andreu, G.L., Sanchez-Baldoquín, C., Avila-González, R., Yamamoto, E.T., Revilla, A., Uyemura, S.A., 2006. Interaction of Vimang (Mangifera indica L. extract) with Fe(III) improves its antioxidant and cytoprotecting activity. Pharmacol. Res. 54, 389-395.
Park, K.H., Yoon, K.H., Yin, J., Le, T.T., Ahn, H.S., Yoon, S.H., Lee, M.W., 2017. Antioxidative and anti-inflammatory activities of galloyl derivatives and antidiabetic activities of Acer ginnala. Evid. Based Complement. Alternat. Med. http://dx.doi.org/10.1155/2017/6945912
Prasad, S., Kalra, N., Shukla, Y., 2007. Hepatoprotective effects of lupeol and mango pulp extract of carcinogen induced alteration in Swiss albino mice. Mol. Nutr. Food Res. 51, 352-359.
Rocha Ribeiro, S.M., Queiroz, J.H., Lopes Ribeiro, M.E., Campos, F.M., Pinheiro Santana, H.M., 2007. Antioxidant in mango (Mangifera indica L.) pulp. Plant Foods Hum. Nutr. 62, 13-17.
Sánchez, G.M., Re, L., Giuliani, A., Núñez-Sellésd, A.J., Davisona, G.P., León-Fernández, O.S., 2000. Protective effects of Mangifera indica L. extract mangiferin and selected anti-oxidants against TPAinduced biomolecules oxidation and peritoneal macrophage activation in mice. Pharm. Res. 42, 565-573.
Scartezzini, P., Speroni, E., 2000. Review on some plants of Indian traditional medicine with antioxidant activity. J. Ethnopharmacol. 71, 23-43.
Sharma, S.R., Dwivedi, S.K., Swarup, D. 1997. Hypoglycemic potential of Mangifera indica leaves in rats. Int. J. Pharm. 35, 130-133.
Shaw, C.A., Taylor, E.L., Megson, I.L., Rossi, A.G., 2005. Nitric oxide and the resolution of inflammation: implications for atherosclerosis. Mem. Inst. Oswaldo Cruz 100, 67-71.
Shu, M., Hu, X.R., Hung, Z.A., Huang, D.D., Zhang, S., 2016. Effects of tanshinone IIA on fibrosis in a rat model of cirrhosis through heme oxygenase-1, inflammation, oxidative stress and apoptosis. Mol. Med. Rep. 13, 3036-3042.
Sosa, S., Balick, M.J., Arvigo, R., Esposito, R.G., Pizza, C., Altinier, G., Tubaro, A., 2002. Screening of the topical anti-inflammatory activity of some Central American plants. J. Ethnopharmacol. 81, 211-215.
Sun, J., Liang, F., Bin, Y., Li, P., Duan, C., 2007. Screening non-colored phenolics in red wines using liquid chromatography/ultraviolet and mass spectrometry/mass spectrometry libraries. Molecules 12, 679-693.
Verardo, G., Duse, I., Callea, A., 2009. Analysis of underivatized oligosaccharides by liquid chromatography/electrospray ionization tandem mass spectrometry with post-column addition of formic acid. Rapid Commun. Mass Spectrom. 23, 1607-1618.
Vyas, A., Syeda, K., Ahmad, A., Padhye, S.H., Sarkar, F., 2012. Perspectives on medicinal properties of mangiferin. Mini. Rev. Med. Chem. 12, 412-425.
Wang, J., Mazza, G., 2002. Inhibitory effects of anthocyanins and other phenolic compounds on nitric oxide production in LPS/IFN--activated RAW 264.7 macrophages. J. Agric. Food Chem. 50, 850-857.
Ye, M., Yang, W.Z., Liu, K.D., Qiao, X., Li, B.J., Cheng, J., Feng, J., Guo, D.A., Zhao, Y.Y., 2012. Characterization of flavonoids in Millettia nitida var. hirsutissima by HPLC/DAD/ESI-MSn. J. Pharm. Anal. 2, 35-42.