Phytochemical composition, antioxidant, and anti-inflammatory activities of essential oil of Acmella uliginosa (Sw.) Cass. grown in North India Terai region of Uttarakhand
الموضوعات :Kanchan Gairola 1 , Shriya Gururani 2 , Ravendra Kumar 3 , Om Prakash 4 , Sanjeev Agarwal 5 , Shiv Dubey 6
1 - Department of Biochemistry, G. B. Pant University of Agriculture and Technology, Pantnagar-263145, Uttarakhand, India
2 - Department of Biochemistry, G. B. Pant University of Agriculture and Technology, Pantnagar-263145, Uttarakhand, India
3 - Department of Chemistry, G. B. Pant University of Agriculture and Technology, Pantnagar-263145, Uttarakhand, India
4 - Department of Chemistry, G. B. Pant University of Agriculture and Technology, Pantnagar-263145, Uttarakhand, India
5 - Department of Biochemistry, G. B. Pant University of Agriculture and Technology, Pantnagar-263145, Uttarakhand, India
6 - Department of Biochemistry, G. B. Pant University of Agriculture and Technology, Pantnagar-263145, Uttarakhand, India
الکلمات المفتاحية: Essential oil, <i>Acmella uliginosa</i> (Sw.) Cass, Limonene, Anti-inflammatory activity, antioxidant activity,
ملخص المقالة :
The plant Acmella uliginosa (Sw.) Cass. belonging to family Asteraceae was subjected to hydro distillation for essential oil extraction and was chemically analyzed by GC/MS for its phytochemical composition. Thirty-five compounds were identified comprising 88.1% of total essential oil composition. Limonene (12.2%) along with sesquisabinene isomer (7.3%) and caryophyllene oxide (5.9%) were the prominent compounds of the essential oil. In-vitro antioxidant activity of essential oil was investigated by DPPH free radical scavenging activity and metal chelating activity having IC50 value of 326.77 ± 5.34 μL and 14.853 ± 0.106 μL respectively whereas reducing power activity having RP50 value of 14.011 ± 0.0446 μL. The essential oil exhibited potent anti-inflammatory activity with IB50 value of 5.629 ± 0.0311 μL compared to standard Diclofenac sodium salt having IB50 value of 23.693 ± 0.306 μg/mL. The essential oil displayed exceedingly marked anti-inflammatory as well as antioxidant activities as compared to standard marketed drugs.
Adams, R.P., 2007. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry. 4th Ed. Allured Publishing Corporation, Carol Stream, Illinois, USA. pp. 542-544.
Aggarwal, B.B., Shishodia, S., 2006. Molecular targets of dietary agents for prevention and therapy of cancer. Biochem. Pharmacol. 71(10), 1397-1421.
Amarowicz, R., Pegg, R.B., Rahimi-Moghaddam, P., Barl, B., Weil., J.A., 2004. Free-radical scavenging capacity and antioxidant activity of selected plant species from the Canadian prairies. Food Chem. 84(4), 551-562.
Barbosa, A.F., de Carvalho, M.G., Smith, R.E., Sabaa-Srur, A.U., 2016. Spilanthol: occurrence, extraction, chemistry, and biological activities. Rev. Bras. Farmacogn. 26(1), 128-133.
Bhutani, K.K., Gohil, V.M., 2010. Natural products drug discovery research in India: status and appraisal. Indian J. Exp. Biol. 48(3), 199-207.
Bianco, A., Venditti, A., Foddai, S., Toniolo, C., Nicoletti, M., 2014. A new problem. Contamination of botanicals by phthalates. Rapid detection tests. Nat. Pro. Res. 28(2), 134-137.
Brand-Williams, W., Cuvelier, M.E., Berset, C., 1995. Use of a free radical method to evaluate antioxidant activity. LWT. Food Sci. Technol. 28(1), 25-30.
Ciriminna, R., Lomeli-Rodriguez, M., Cara, P.D., Lopez-Sanchez, J.A., Pagliaro, M., 2014. Limonene: a versatile chemical of the bioeconomy. Chem. Commun. 50(97), 15288-15296.
Dubey, S., Maity, S., Singh, M., Saraf, S.A., Saha, S., 2013. Phytochemistry, pharmacology and toxicology of Spilanthes acmella: a review. Adv. Pharmacol. Sci. 2013, 1-10.
Ebrahimzadeh, M.A., Pourmorad, F., Bekhradnia, A.R., 2008. Iron chelating activity, phenol, and flavonoid content of some medicinal plants from Iran. Afr. J. Biotechnol. 7(18), 3188-3192.
El-Wahab, A.E.A., Ghareeb, D.A., Sarhan, E.E., Rao, T.M., Rao, B.G., Rao, Y.V., 2012. Antioxidant activity of Spilanthes acmella extracts. Int. J. Phytopharm. 3(2), 216-220.
Etèka, C.A., Ahohuendo, B.C., Ahoton, L.E., Dabadé, S.D., Ahanchédé, A., 2010. Seeds germination of four traditional leafy vegetables in Benin (LFT). Tropicultura. 28(3),148-152.
Gülçin, İ., 2015. Fe3+–Fe2+ Transformation Method: An Important Antioxidant Assay. in: Armstrong, D. (Ed.), Advanced Protocols in Oxidative Stress III. Methods in Molecular Biology (Methods and Protocols). Humana Press, New York, pp. 233-246.
Heendeniya, S., Ratnasooriya, W.D., Pathirana, R.N., 2018. In vitro investigation of anti-inflammatory activity and evaluation of phytochemical profile of Syzygium caryophyllatum. Int. J. Pharmacogn. Phytochem. 7(1), 1759-1763.
Kala, C.P., Mathur, V.B., 2002. Patterns of plant species distribution in the Trans-Himalayan region of Ladakh, India. J. Veg. Sci. 13(6), 751-754.
Kala, C.P., 2006. Medicinal plants: potential for economic development in the state of Uttaranchal, India. Int. J. Sustainable Dev. World Ecol. 13(6), 492-498.
Kharshiing, E.V., 2012. Aqueous extracts of dried fruits of Zanthoxylum armatum DC., (Rutaceae) induce cellular and nuclear damage coupled with inhibition of mitotic activity in-vivo. Am. J. Plant Sci. 3(11), 1646-1653.
Kinghorn, A.D., 2001. Pharmacognosy in the 21st century. J. Pharm. Pharmacol. 53(2), 135-148.
Krishnaswamy, N.R., Prasanna, S., Seshandri, T.R., Vedantham, T.N., 1975. α- and β- Amyrin esters and sitosterol glucoside from Spilanthes acmella. Phytochemistry. 14(7), 1666-1667.
Leelaprakash, G., Dass, S.M., 2011. In vitro anti-inflammatory activity of methanol extract of Enicostemma axillare. Int. J. Drug Dev. Res. 3(3), 189-196.
Leng, T.C., Ping, N.S., Lim, B.P., Keng, C.L., 2011. Detection of bioactive compounds from Spilanthes acmella (L) plants and its various in vitro culture products. J. Med. Plants Res. 5, 371-378.
Lewis, M.A., Russo, E.B., Smith, K.M., 2018. Pharmacological foundations of Cannabis chemovars. Planta med. 84(4), 225-233.
Li, L.L., McCorkle, S.R., Monchy, S., Taghavi, S., Vander Lelie, D., 2009. Bioprospecting metagenomes: glycosyl hydrolases for converting biomass. Biotechnol. Biofuels. 2(1), 10.
Maimulyanti, A., Prihadi, A., 2016. Chemical composition of essential oil and hexane extract and antioxidant activity of various extracts of Acmella uliginosa (Sw.) Cass flowers from Indonesia. Agric. Nat. Resour. 50(4), 264-269.
Milind, P., Dev, C., 2012. Orange: range of benefits. Int. Res. J. Pharm. 3(7), 59-63.
Mizrahi, B., Shapira, L., Domb, A.J., Houri-Haddad, Y., 2006. Citrus oil and MgCl2 as antibacterial and anti-inflammatory agents. J. Periodontol. 77(6), 963-968.
Pandey, V., Agrawal, V., Raghavendra, K., Dash, A.P., 2007. Strong larvicidal activity of three species of Spilanthes (Akarkara) against malaria (Anopheles stephensi Liston, Anopheles culicifacies, species C) and filaria vector (Culex quinquefasciatus Say). Parasitol. Res. 102(1), 171-174.
Pavithra, K., Vadivukkarasi, S., 2015. Evaluation of free radical scavenging activity of various extracts of leaves from Kedrostis foetidissima (Jacq.) Cogn. Food Sci. Hum. Well. 4(1), 42-46.
Ramsewak, R.S., Nair, M.G., Strasburg, G.M., DeWitt, D.L., Nitiss, J.L. 1999. Biologically Active carbazole alkaloids from Murraya koenigii. J. Agric. Food Chem. 47(2), 444-447.
Rao, T.M, Rao, B.G., Rao, Y.V., 2012. Antioxidant activity of Spilanthes acmella extracts. Int. J. Phytop. 3(2), 216-220.
Samuelsson, G., 2004. Drugs of Natural Origin: A Textbook of Pharmacognosy, 5th Ed. Swedish Pharmaceutical Press, Stockholm.
Sana, H., Rani, A.S., Sulakshana, G., 2014. Determination of antioxidant potential in Spilanthes acmella using DPPH assay. Int. J. Curr. Microbiol. Appl. Sci. 3, 219-213.
Tung, Y.T., Chua, M.T., Wang, S.Y., Chang, S.T., 2008. Anti-inflammation activities of essential oil and its constituents from indigenous cinnamon (Cinnamomum osmophloeum) twigs. Bioresour. Technol. 99(9), 3908-3913.
Venditti, A., 2020. What is and what should never be: artifacts, improbable phytochemicals, contaminants, and natural products. Nat. Pro. Res. 34(7), 1014-1031.
Yen, G.C., Duh, P.D., Chuang, D.Y., 2000. Antioxidant activity of anthraquinones and anthrone. Food Chem. 70(4), 437-441.
Yu, L., Yan, J., Sun, Z., 2017. D-limonene exhibits anti-inflammatory and antioxidant properties in an ulcerative colitis rat model via regulation of iNOS, COX-2, PGE2 and ERK signaling pathways. Mol. Med. Rep. 15(4), 2339-2346.
Zheng, G.Q., Kenney, P.M., Lam, L.K., 1992. Sesquiterpenes from clove (Eugenia caryophyllata) as potential anti-carcinogenic agents. J. Nat. Prod. 55(7), 999-1003.