On the $k$-ary Moment Map
الموضوعات : مجله بین المللی ریاضیات صنعتیM. Dara 1 , A. Dehghan Nezhad 2
1 - School of Mathematics, Iran University of Science and Technology, Tehran, Iran.
2 - School of Mathematics,
Iran University of Science and Technology, Tehran, Iran.
الکلمات المفتاحية: reduction, Lie algebra, K-ary moment map, Moment map, Hamiltonian system,
ملخص المقالة :
The moment map is a mathematical expression of the concept of the conservation associated with the symmetries of a Hamiltonian system. The abstract moment map is defined from G-manifold M to dual Lie algebra of G. We will interested study maps from G-manifold M to spaces that are more general than dual Lie algebra of G. These maps help us to reduce the dimension of a manifold much more.
[1] A. Michele, D. Silva, A. Cannas, L. Eugene, Symplectic geometry of integrable Hamiltonian systems, Birkhauser, (2012).
[2] D. Nicola Antonio, E. Chiara, Reduction of pre-Hamiltonian actions, Elsevier, Journal of Geometry and Physics 115 (2017) 178-190.
[3] D. Shubham, H. Jonathan, J. Lisa C, V. Hurk, Hamiltonian Group Actions and Equivariant Cohomology, Springer, (2019).
[4] G. Victor, O. TL, K. Yael, G. Viktor L, Moment maps, cobordisms, and Hamiltonian group actions, American Mathematical Soc. 98 (2002) 116-123.
[5] G. Victor W, S, Shlomo, Supersymmetry and equivariant de Rham theory, Springer, Science & Business Media, (2013).
[6] K. Yael, Moment maps and non-compact cobordisms, Journal of Dierential Geometry 49 (1998) 183-201.
[7] K. B Orbits, Symplectic structures and representation theory, Springer, US-Japan Seminar in Dierential Geometry (Kyoto, 1965), Nippon Hyoronsha, Tokyo, 77 (1965).
[8] M. Jerrold, A. Weinstein, Reduction of symplectic manifolds with symmetry, Elsevier, Reports on mathematical physics 5 (1974) 121-130.
[9] M. Jerrold E., G. Misiolek, J. P. Ortega, Matthew Perlmutter, and Tudor S. Ratiu, Hamiltonian reduction by stages, Springer, (2007).
[10] M. Kenneth R, Symmetries and integrals in mechanics, Elsevier, Dynamical systems 16 (1973) 259-272.
[11] O. Juan-Pablo, R, Tudor S, Momentum maps and Hamiltonian reduction, Springer, Science & Business Media 222 (1992) 127-135.
[12] P. Ludovic, The Momentum Map, Symplectic Reduction and an Introduction to Brownian Motion, (2010).
[13] S. Jean-Marie, Structure des systemes dynamiques, Dunod, Paris, (1970).
[14] W. Frank W, Foundations of dierentiable manifolds and Lie groups, Springer, Science & Business Media, 94 (2013) 234-141.