بررسی اثرات بافتی تغذیه با منابع مختلف آهن و روی (نانو ذره و شکل معدنی) در ماهی کپور معمولی (
الموضوعات :
حسن صحرایی
1
,
سید علی اکبر هدایتی
2
,
ثارالله یارمحمدی بربرستانی
3
,
محمد فخریان
4
1 - دکترای گروه شیلات، دانشکده منابع طبیعی، دانشگاه گنبد کاووس،گنبد کاووس، ایران. *(مسوول مکاتبات)
2 - دانشیار گروه شیلات، دانشگاه علوم کشاورزی و منابع طبیعی گرگان.
3 - گروه فیزیولوژی دام و طیور، دانشکده علوم دامی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان.
4 - دکترای شیلات، دانشکده منابع طبیعی و محیط زیست، دانشگاه آزاد اسلامی واحد علوم تحقیقات، تهران
تاريخ الإرسال : 08 الخميس , جمادى الثانية, 1437
تاريخ التأكيد : 27 الأربعاء , رجب, 1437
تاريخ الإصدار : 20 الخميس , رمضان, 1443
الکلمات المفتاحية:
کپور معمولی,
نانو تکنولوژی,
آسیبهای هیستوپاتولوژیک,
نانوذره آهن و روی,
ملخص المقالة :
زمینه و هدف: با گسترش نانو تکنولوژی و مهندسی مواد، نانو ذرات مختلفی با خصوصیات تازه و نو ظهور ساخته شده و علی رغم این که پتانسیل اثرات سمی آن ها در بسیاری از مواد ناشناخته است، این مواد کاربرد های روز افزون نیز یافته اند. از این رو در تحقیق حاضر به بررسی اثرات بافتی تغذیه با منابع مختلف آهن و روی در ماهی کپور معمولی (Cyprinus carpio) پرداخته شد.
روش بررسی: برای این منظور ابتدا تعداد 420 قطعه ماهی کپور معمولی (با میانگین وزن اولیه 7/4±45 گرم) تهیه گردید، سپس ماهیان ضدعفونی و به مدت 10 روز با شرایط آزمایش گاهی سازش یافتند. پس از آن ماهیان به صورت تصادفی به هفت گروه تقسیم شدند، گروه اول به عنوان شاهد در نظر گرفته شد و سایر گروه ها به ترتیب مقادیر 10، 50 و 100 میکرو گرم از نانوذرات آهن و روی را در هر گرم غذا به مدت 60 روز دریافت کردند.
یافته ها: مطالعات میکروسکوپی اندام های مورد مطالعه (کبد، کلیه) نشان داد که با افزایش میزان نانو ذرات، آسیب های هیستو پاتولوژیک در کبد بیش تر می شود، اما سلول های بافتی در مقادیر متوسط و کم هر دو نانوذره و در مقدار بالای نانوذره آهن با برداشتن عامل القایی می توانند دوباره فعالیت فیزیولوژیک خود را از سر بگیرند اما در مقدار بالا روی این ترمیم بافتی بر خلاف نانو ذرات آهن به صورت برگشت پذیر نبود.
بحث و نتیجه گیری: از نتایج فوق چنین می توان استنباط کرد که افزایش مقدار نانو ذرات مورد نظر می تواند از عوامل موثر در افزایش آسیب های بافتی بر بافت اندام های مورد مطالعه باشد.
المصادر:
Srivastava, L. 2005. Ubiquitous network societies: ITU new initiatives programme, background paper. Document: UNS/03. Internation Telecommunication Union (ITU) New Initiatives Workshop on Ubiquitous Network Societies.
De Jong, W.H., B. Roszek and R.E. Geertsma. 2005. Nanotechnology in medical applications: possible risks for human health. RIVM rapport 265001002. R. v. V. e. M. RIVM.
Hannah, W. and P.B. Thompson. 2008. Nanotechnology, risk and the environment: a review. Journal of environmental monitoring. 10:291-300.
Shatkin, J.A. 2012. Nanotechnology: health and environmental risks. CRC PressI Llc 385 pp.
Schuler, E. 2004. Perception of risks and nanotechnology. Discovering the nanoscale. 11:279-284.
Gwinn, M.R. and V. Vallyathan. 2006. Nanoparticle: health effects pros and cons. Environmental health perspectives. 114:1818-1825.
Xiaoshan, Z.; Shengyan, T. and Zhonghua, C., 2008. Toxicity Assessment of Iron Oxide Nanoparticles in Zebrafish (Danio rerio) Early Life Stages. J. Environ. Sci. Health. Vol. 43, pp: 278–284.
Kim, J.S.; Yoon, T.J.; Yu, K.N.; Kim, B.G.; Park, S.J. and Kim, H.W., 2006. Toxicity and tissue distribution of magnetic nanoparticles in mice. Toxicol Sci. Vol. 89, No. 1, pp: 338-347.
Suttle, N. 2010. Mineral nutrition of livestock, 4th Edition. Pp: 426-458, Midlothian EH26 OPZ, UK. Animal Science, 73: 1227-1238.
Pal, D. T., Gowda N. K. S., Prasad C. S., Amarnath R., Bharadwaj U., SureshBabu G. and Sampath, K. T. 2010. Effect of copper and zinc-methionine supplementation on bioavailability, mineral status and tissue concentrations of copper and zinc in ewes. Journal of Trace Elements in Medicine and Biology, 24: 89-94.
Zalewski, P. D., Ai, Q. T., Dion G., Lata, J., Chiara, M. and Richard, E. R. 2005. Zinc metabolism in airway epithelium and airway inflammation: basic mechanisms and clinical targets: A review. Pharmacology & Therapeutics, 105: 127-149.
Formigari, A., Irato P. and Santon, A. 2007. Zinc, antioxidant systems and metallothionein in metal mediatedapoptosis: biochemical and cytochemical aspects. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 146: 443-459.
Wedekind, K. J. and Baker, D. H. 1990. Zinc bioavailability in feed-grade sources of zinc. Journal of Animal Science, 68: 684-689.
Shulin, J. I., Changhui, Y. E. 2008. Synthesis, growth mechanism and applications of zinc oxide nanomaterials. Journal of Materials Science and Technology, 24: 457-472.
Song, W., Zhang, J., Guo, J., Zhang, J., Ding, F., Li, L. and Sun, Z. 2010. Role of the dissolved zinc ion and reactive oxygen species in cytotoxicity of ZnO nanoparticles. Toxicology Letters, 199: 389-397.
Francisco, H. S. J., Facundo, R., Diana, C. C. C. P., Fidel, M. G., Alberto, E. M., Amaury, D. J. P. G., Humberto, T. P. and Gabriel, M. C. 2008 The antimicrobial sensitivity of Streptococcus mutans to nanoparticles of silver, zinc oxide and gold. Nanomedicine: Nanotechnology, Biology and Medicine, 4: 237-240.
Hosseinzadeh, A., Samarghandi, M.R., Alikhai, M. Y., Roshenaei, Q., A.Q. 2012. Antimicrobial efficacy of zinc oxide nanoparticle suspension against gram-positive and gram-negative bacteria. Journal of Health and Environment, Scientific and Research Quarterly of Iranian Scientific Association of Environmental Health, 5 (4): 463-474.
Van der Oost, R.J., Beber, N.P.E., Vermeulen, P. 2003. Fish bioaccumulation and biomarkers in environmental risk assessment. Environmental Toxicology and Pharmacology, 13: 57-149.
Anderson, D.M., Morel, F.M. 1978. Copper sensitivity of Gonyaulax tamarensis. Limnology and Oceanography, 23: 283-295.
Turkmen, M., Turkmen, A., Tepe, Y., Ates, A., Gokkus, K.2008. Determination of metal contaminations in sea foods from Marmara, Aegean and Mediterranean seas: Twelve fish species, Food Chemistry, 108:794-800.
Wagermann, R., Muir, D.C.G. 1984. Concentration of heavy metals and organochlorine in marine mammals of northern waters overview and evaluation. Canadian Bulletin of Fisheries and Aquatic Sciences, No 1279.
Wekell, J.C., Shearer, K.D., Houle, C.R. 1983. High zinc supplementation of rainbow trout diets. Progresive in Fish Culture, 45: 144-147.
Satoh, S., Takeuchi, T., Watanabe, T. 1987. Availability to Rainbow Trout of Zinc in White Fish Meal and of VariousZinc Compounds. Nippon Suisan Gakkaishi, 53: 595-599.
Kiron, V., Gunji, A., Okamoto, N., Satoh, S., Ikeda, Y., Watanabe, T. 1993. Dietary nutrient dependentvariations on natural-killer activity of the leucocytes of rainbow trout. Fish Pathology, 28: 71-76.
Roussel, A.M., Facn, A.K., Zouari, N., Mahjoub, S., Matheau, J.M., Anderson, R.A. 2003. Antioxidant Effects of Zinc Supplementation in Tunisians with Type 2 Diabetes Mellitus. Journal of the American College of Nutrition, 22:316-321.
Agah, H., Leermakers, M., Elskens, M., Fatemi, S.M.R., Baeyens, W. 2009. Accumulation of trace metals in the muscle and liver tissues of five species from the Persian Gulf. Journal of Environmental Monitoring and Assessment, 157:499-514.
Askari sari, A., Velayatzadeh, M.2011. Investigation of lead and zinc concentrations in liver and muscle tissues of two species of farmed carp and rainbow trout. Iranian Journal of Veterinary Medicine, 7(1): 30-35.
Jalali, J.B., Aghazadeh M.M. 2007. Fish poisoning by heavy metals in water and its importance in public health. Man Book Publishing, p 134.
Bury, N.R., Grosell, M. 2003. Mechanistic study of waterborne iron acquisition by a freshwater teleost fish, zebrafish (Danio rerio). Journal of Experimental Biology, 260: 3529-3535.
Karimi rad, F. 2001. Evaluation of the effects of propolis alcoholic extract on histopathology of liver and kidney and humoral immunity in rainbow trout. Master of Histology and Embryology. Urmia University. Issue: 1037-2. P 56-29.
Rocha, E., Monteiro, R.A.F. 1999. Histology and cytology of fish liver: A review, p.321-344. In: Saksena, D.N. (ed.) Ichthyology: Recent research advances. Science Publishers, Enfield, New Hampshire.
Paris-Palacios, S., Biagianti-Risbourg, S., Vernet, G. 2000. Biochemical and (ultra) structural hepatic perturbation of Brachydanio rerio (Teleostei, Cyprinidae) exposed to two sublethal concentrations of copper sulphate. AquacultureToxicology, 50:109-124.
Atbani, A,. Keykhosravi, A,. Vatandoost, J. 2008. Toxic effects of different concentrations of zinc and copper metals on liver tissue and gills of common carp (Cyprinus carpio). Twelfth National Conference on Environmental Health of Iran, Shahid Beheshti University of Medical Sciences, Faculty of Health.
Roberts, R.J. 2001. The Immunology of teleost. In: Roberts, R.J. (Ed), Fish Pathology, Sunders, London, England, pp: 133-150.
Rezaei ranjbar, R. 2010. Toxic effects of silver nanoparticles on liver and spleen tissues in rats. The first conference on nanoscience and nanotechnology, Payame Noor University of Yazd Province. PP: 42-52. (In Persian)
Haghighi, kh. A. 2007. Pathology of fish and shrimp. Islamic Azad University, Science and Research Branch of Tehran. 401p. (In Persian)
Jaliliyan, A., Panahifar, A., Mahmoudi, M., Akhlaghi, M., Simchi, A. 2009. Preparation and bioassay of gallium-67-labeled iron oxide superparamagnetic nanoparticles in healthy rats. Journal of Nuclear Science and Technology. No. 50, pp. 36-29. (In Persian)
Choi, J.E. 2010. Induction of oxidative stress and apoptosis by silver nanoparticles in the liver of adult zebrafish. Journal of Aquatic Toxicology, 100: 151-159.
Sohrabi, D,. Golami, M. 2009. Evaluation of chronic effects of zinc metal (zinc chloride) on liver, kidney and spleen tissues in male rats (RAT). Quarterly Journal of Developmental Biology.1(2):9-14. (In Persian)
Chernecky, C.C., Berger, B.J. 1997. Laboratory tests and diagnostic procedures. Saunders Company, phyladelphia, USA, pp: 170-173.
_||_
Srivastava, L. 2005. Ubiquitous network societies: ITU new initiatives programme, background paper. Document: UNS/03. Internation Telecommunication Union (ITU) New Initiatives Workshop on Ubiquitous Network Societies.
De Jong, W.H., B. Roszek and R.E. Geertsma. 2005. Nanotechnology in medical applications: possible risks for human health. RIVM rapport 265001002. R. v. V. e. M. RIVM.
Hannah, W. and P.B. Thompson. 2008. Nanotechnology, risk and the environment: a review. Journal of environmental monitoring. 10:291-300.
Shatkin, J.A. 2012. Nanotechnology: health and environmental risks. CRC PressI Llc 385 pp.
Schuler, E. 2004. Perception of risks and nanotechnology. Discovering the nanoscale. 11:279-284.
Gwinn, M.R. and V. Vallyathan. 2006. Nanoparticle: health effects pros and cons. Environmental health perspectives. 114:1818-1825.
Xiaoshan, Z.; Shengyan, T. and Zhonghua, C., 2008. Toxicity Assessment of Iron Oxide Nanoparticles in Zebrafish (Danio rerio) Early Life Stages. J. Environ. Sci. Health. Vol. 43, pp: 278–284.
Kim, J.S.; Yoon, T.J.; Yu, K.N.; Kim, B.G.; Park, S.J. and Kim, H.W., 2006. Toxicity and tissue distribution of magnetic nanoparticles in mice. Toxicol Sci. Vol. 89, No. 1, pp: 338-347.
Suttle, N. 2010. Mineral nutrition of livestock, 4th Edition. Pp: 426-458, Midlothian EH26 OPZ, UK. Animal Science, 73: 1227-1238.
Pal, D. T., Gowda N. K. S., Prasad C. S., Amarnath R., Bharadwaj U., SureshBabu G. and Sampath, K. T. 2010. Effect of copper and zinc-methionine supplementation on bioavailability, mineral status and tissue concentrations of copper and zinc in ewes. Journal of Trace Elements in Medicine and Biology, 24: 89-94.
Zalewski, P. D., Ai, Q. T., Dion G., Lata, J., Chiara, M. and Richard, E. R. 2005. Zinc metabolism in airway epithelium and airway inflammation: basic mechanisms and clinical targets: A review. Pharmacology & Therapeutics, 105: 127-149.
Formigari, A., Irato P. and Santon, A. 2007. Zinc, antioxidant systems and metallothionein in metal mediatedapoptosis: biochemical and cytochemical aspects. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 146: 443-459.
Wedekind, K. J. and Baker, D. H. 1990. Zinc bioavailability in feed-grade sources of zinc. Journal of Animal Science, 68: 684-689.
Shulin, J. I., Changhui, Y. E. 2008. Synthesis, growth mechanism and applications of zinc oxide nanomaterials. Journal of Materials Science and Technology, 24: 457-472.
Song, W., Zhang, J., Guo, J., Zhang, J., Ding, F., Li, L. and Sun, Z. 2010. Role of the dissolved zinc ion and reactive oxygen species in cytotoxicity of ZnO nanoparticles. Toxicology Letters, 199: 389-397.
Francisco, H. S. J., Facundo, R., Diana, C. C. C. P., Fidel, M. G., Alberto, E. M., Amaury, D. J. P. G., Humberto, T. P. and Gabriel, M. C. 2008 The antimicrobial sensitivity of Streptococcus mutans to nanoparticles of silver, zinc oxide and gold. Nanomedicine: Nanotechnology, Biology and Medicine, 4: 237-240.
Hosseinzadeh, A., Samarghandi, M.R., Alikhai, M. Y., Roshenaei, Q., A.Q. 2012. Antimicrobial efficacy of zinc oxide nanoparticle suspension against gram-positive and gram-negative bacteria. Journal of Health and Environment, Scientific and Research Quarterly of Iranian Scientific Association of Environmental Health, 5 (4): 463-474.
Van der Oost, R.J., Beber, N.P.E., Vermeulen, P. 2003. Fish bioaccumulation and biomarkers in environmental risk assessment. Environmental Toxicology and Pharmacology, 13: 57-149.
Anderson, D.M., Morel, F.M. 1978. Copper sensitivity of Gonyaulax tamarensis. Limnology and Oceanography, 23: 283-295.
Turkmen, M., Turkmen, A., Tepe, Y., Ates, A., Gokkus, K.2008. Determination of metal contaminations in sea foods from Marmara, Aegean and Mediterranean seas: Twelve fish species, Food Chemistry, 108:794-800.
Wagermann, R., Muir, D.C.G. 1984. Concentration of heavy metals and organochlorine in marine mammals of northern waters overview and evaluation. Canadian Bulletin of Fisheries and Aquatic Sciences, No 1279.
Wekell, J.C., Shearer, K.D., Houle, C.R. 1983. High zinc supplementation of rainbow trout diets. Progresive in Fish Culture, 45: 144-147.
Satoh, S., Takeuchi, T., Watanabe, T. 1987. Availability to Rainbow Trout of Zinc in White Fish Meal and of VariousZinc Compounds. Nippon Suisan Gakkaishi, 53: 595-599.
Kiron, V., Gunji, A., Okamoto, N., Satoh, S., Ikeda, Y., Watanabe, T. 1993. Dietary nutrient dependentvariations on natural-killer activity of the leucocytes of rainbow trout. Fish Pathology, 28: 71-76.
Roussel, A.M., Facn, A.K., Zouari, N., Mahjoub, S., Matheau, J.M., Anderson, R.A. 2003. Antioxidant Effects of Zinc Supplementation in Tunisians with Type 2 Diabetes Mellitus. Journal of the American College of Nutrition, 22:316-321.
Agah, H., Leermakers, M., Elskens, M., Fatemi, S.M.R., Baeyens, W. 2009. Accumulation of trace metals in the muscle and liver tissues of five species from the Persian Gulf. Journal of Environmental Monitoring and Assessment, 157:499-514.
Askari sari, A., Velayatzadeh, M.2011. Investigation of lead and zinc concentrations in liver and muscle tissues of two species of farmed carp and rainbow trout. Iranian Journal of Veterinary Medicine, 7(1): 30-35.
Jalali, J.B., Aghazadeh M.M. 2007. Fish poisoning by heavy metals in water and its importance in public health. Man Book Publishing, p 134.
Bury, N.R., Grosell, M. 2003. Mechanistic study of waterborne iron acquisition by a freshwater teleost fish, zebrafish (Danio rerio). Journal of Experimental Biology, 260: 3529-3535.
Karimi rad, F. 2001. Evaluation of the effects of propolis alcoholic extract on histopathology of liver and kidney and humoral immunity in rainbow trout. Master of Histology and Embryology. Urmia University. Issue: 1037-2. P 56-29.
Rocha, E., Monteiro, R.A.F. 1999. Histology and cytology of fish liver: A review, p.321-344. In: Saksena, D.N. (ed.) Ichthyology: Recent research advances. Science Publishers, Enfield, New Hampshire.
Paris-Palacios, S., Biagianti-Risbourg, S., Vernet, G. 2000. Biochemical and (ultra) structural hepatic perturbation of Brachydanio rerio (Teleostei, Cyprinidae) exposed to two sublethal concentrations of copper sulphate. AquacultureToxicology, 50:109-124.
Atbani, A,. Keykhosravi, A,. Vatandoost, J. 2008. Toxic effects of different concentrations of zinc and copper metals on liver tissue and gills of common carp (Cyprinus carpio). Twelfth National Conference on Environmental Health of Iran, Shahid Beheshti University of Medical Sciences, Faculty of Health.
Roberts, R.J. 2001. The Immunology of teleost. In: Roberts, R.J. (Ed), Fish Pathology, Sunders, London, England, pp: 133-150.
Rezaei ranjbar, R. 2010. Toxic effects of silver nanoparticles on liver and spleen tissues in rats. The first conference on nanoscience and nanotechnology, Payame Noor University of Yazd Province. PP: 42-52. (In Persian)
Haghighi, kh. A. 2007. Pathology of fish and shrimp. Islamic Azad University, Science and Research Branch of Tehran. 401p. (In Persian)
Jaliliyan, A., Panahifar, A., Mahmoudi, M., Akhlaghi, M., Simchi, A. 2009. Preparation and bioassay of gallium-67-labeled iron oxide superparamagnetic nanoparticles in healthy rats. Journal of Nuclear Science and Technology. No. 50, pp. 36-29. (In Persian)
Choi, J.E. 2010. Induction of oxidative stress and apoptosis by silver nanoparticles in the liver of adult zebrafish. Journal of Aquatic Toxicology, 100: 151-159.
Sohrabi, D,. Golami, M. 2009. Evaluation of chronic effects of zinc metal (zinc chloride) on liver, kidney and spleen tissues in male rats (RAT). Quarterly Journal of Developmental Biology.1(2):9-14. (In Persian)
Chernecky, C.C., Berger, B.J. 1997. Laboratory tests and diagnostic procedures. Saunders Company, phyladelphia, USA, pp: 170-173.