Electrochemical Analysis of Sunset Yellow Based on NiO-SWCNTs NC/IL Modified Carbon Paste Electrode in Food Samples
الموضوعات :S. A. Shahidi 1 , P. Ebrahimi 2 , T. Zabihpour 3 , S. Naghizadeh Raeisi 4
1 - Associate Professor of the Department of Food Science and Technology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran.
2 - M.S c Student of the Department of Food Science and Technology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran.
3 - PhD Student of the Department of Food Science and Technology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran.
4 - Assistant Professor of the Department of Food Science and Technology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran.
الکلمات المفتاحية: Electrochemical Sensor, Food Dyes, Ionic liquid, Nanocomposite, Sunset Yellow,
ملخص المقالة :
In this study, arapid and sensitive electrochemical electrode was fabricated to measure the amount of sunset yellow in food samples. This analytical sensor was mediated using a NiO-decorated single-walled carbon nanotubes (NiO-SWCNTs) nanocomposite and N-octylpyridinium hexafluorophosphate ionic liquid (IL). The morphology of the NiO-SWCNTs nanocomposite was investigated by means of X-Ray Diffraction (XRD) and Transmission electron microscopy (TEM) methods. Cyclic Voltammetry (CV) and Square Wave Voltammetry (SWV) techniques were utilized to verify the appropriateness of the suggested sensor. In comparison to the bare carbon paste electrode (CPE), the electrochemical response of modified electrode had a considerable improve. According to the Chronoamperometry and scan rate analyses, diffusion index (D) and transfer coefficient (α) were obtained 1.8×10-5 cm2/s and 0.52, respectively. The outcomes achieved from SWV technique demonstrated a reasonable linear dynamic range (LDR) between 0.09 and 750 µM, and the Limit of Detection (LOD) was obtained 0.05 µM. Eventually, the quantity of sunset yellow in real samples showed a recovery range between 99.2 and 99.86%, confirming the accuracy of the proposed sensor.
Afshar, S., Zamani, H. A. & Karimi-Maleh, H. (2020). NiO/SWCNTs coupled with an ionic liquid composite for amplified carbon paste electrode; A feasible approach for improving sensing ability of adrenalone and folic acid in dosage form. Journal of Pharmaceutical and Biomedical Analysis, 113393.
Afsharmanesh, E., Karimi-Maleh, H., Pahlavan, A. & Vahedi, J. (2013). Electrochemical behavior of morphine at ZnO/CNT nanocomposite room temperature ionic liquid modified carbon paste electrode and its determination in real samples. Journal of Molecular Liquids, 181, 8–13.
Aktaş, A. H. & Ertokuş, G. P. (2010). Spectral simultaneous determination of tartrazine, allura red, sunset yellow and caramel in drink sample by chemometric method. Reviews in Analytical Chemistry, 29(2), 107–116.
Alves, S. P., Brum, D. M., de Andrade, E. C. B. & Netto, A. D. P. (2008). Determination of synthetic dyes in selected foodstuffs by high performance liquid chromatography with UV-DAD detection. Food Chemistry, 107(1), 489–496.
Aman, K. & Gupta, U. (2012). The review on spectrophotometric determination of synthetic food dyes and lakes. Gazi University Journal of Science, 25(3), 579–588.
Ansari, M., Kazemi, S., Khalilzadeh, M. A., Karimi-Maleh, H. & Zanousi, M. B. P. (2013). Sensitive and stable voltammetric measurements of norepinephrine at ionic liquid-carbon nanotubes paste electrodes. International Journal of Electrochemical Science, 8, 1938–1948.
Arnold, L. E., Lofthouse, N. & Hurt, E. (2012). Artificial food colors and attention-deficit/hyperactivity symptoms: conclusions to dye for. Neurotherapeutics, 9(3), 599–609.
Azab, S. M., Hassan, W. S., Abdulwahab, S., & Ali, E. E. (2020). The synergistic effect of zeolites and polyethylene glycol for the determination of the anti-epileptic drug eslicarbazepine acetate and its metabolite. Sensors and Actuators B: Chemical, 310, 127836.
Beitollah, H., Goodarzian, M., Khalilzadeh, M. A., Karimi-Maleh, H., Hassanzadeh, M. & Tajbakhsh, M. (2012). Electrochemical behaviors and determination of carbidopa on carbon nanotubes ionic liquid paste electrode. Journal of Molecular Liquids, 173, 137–143.
Bijad, M., Karimi-Maleh, H. & Khalilzadeh, M. A. (2013). Application of ZnO/CNTs nanocomposite ionic liquid paste electrode as a sensitive voltammetric sensor for determination of ascorbic acid in food samples. Food Analytical Methods, 6(6), 1639–1647.
Biswas, S. J. & Khuda-Bukhsh, A. R. (2005). Cytotoxic and genotoxic effects of the azo-dye p-dimethylaminoazobenzene in mice: a time-course study. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 587(1–2), 1–8.
Capitán-Vallvey, L. F., Iglesias, N. N., de Orbe Payá, I. & Castaneda, R. A. (1997). Simultaneous determination of tartrazine and sunset yellow in cosmetic products by first-derivative spectrophotometry. Microchimica Acta, 126(1–2), 153–157.
Chandran, S., Lonappan, L. A., Thomas, D., Jos, T. & Kumar, K. G. (2014). Development of an electrochemical sensor for the determination of amaranth: a synthetic dye in soft drinks. Food Analytical Methods, 7(4), 741–746.
Culzoni, M. J., Schenone, A. V, Llamas, N. E., Garrido, M., Di Nezio, M. S., Band, B. S. F. & Goicoechea, H. C. (2009). Fast chromatographic method for the determination of dyes in beverages by using high performance liquid chromatography—diode array detection data and second order algorithms. Journal of Chromatography A, 1216(42), 7063–7070.
Directive, H. A. T. (1994). European Parliament and Council Directive 94/36/EC of 30 June 1994 on colours for use in foodstuffs. Official Journal L, 237(10/09), 13–29.
Ebrahimi, P., Shahidi, S. A. & Bijad, M. (2020). A rapid voltammetric strategy for determination of ferulic acid using electrochemical nanostructure tool in food samples. Journal of Food Measurement and Characterization, 14, 3389–3396.
Ensafi, A. A., Bahrami, H., Rezaei, B. & Karimi-Maleh, H. (2013). Application of ionic liquid–TiO2 nanoparticle modified carbon paste electrode for the voltammetric determination of benserazide in biological samples. Materials Science and Engineering: C, 33(2), 831–835.
Ensafi, A. A., Karimi-Maleh, H., Mallakpour, S. & Hatami, M. (2011). Simultaneous determination of N-acetylcysteine and acetaminophen by voltammetric method using N-(3, 4-dihydroxyphenethyl)-3, 5-dinitrobenzamide modified multiwall carbon nanotubes paste electrode. Sensors and Actuators b: Chemical, 155(2), 464–472.
Ghoreishi, S. M., Behpour, M. & Golestaneh, M. (2012). Simultaneous determination of sunset yellow and tartrazine in soft drinks using gold nanoparticles carbon paste electrode. Food Chemistry, 132(1), 637–641.
Gosetti, F., Gianotti, V., Polati, S. & Gennaro, M. C. (2005). HPLC-MS degradation study of E110 Sunset Yellow FCF in a commercial beverage. Journal of Chromatography A, 1090(1–2), 107–115.
Granström, M., Carlberg, J. C. & Inganäs, O. (1995). Electrically conductive polymer fibres with mesoscopic diameters: 2. Studies of polymerization behaviour. Polymer, 36(16), 3191–3196.
Karimi-Maleh, H., Moazampour, M., Ahmar, H., Beitollahi, H. & Ensafi, A. A. (2014). A sensitive nanocomposite-based electrochemical sensor for voltammetric simultaneous determination of isoproterenol, acetaminophen and tryptophan. Measurement, 51, 91–99.
Keyvanfard, M., Salmani-Mobarakeh, R., Karimi-Maleh, H. & Alizad, K. (2014). Application of 3, 4-dihydroxycinnamic acid as a suitable mediator and multiwall carbon nanotubes as a sensor for the electrocatalytic determination of L-cysteine. Chinese Journal of Catalysis, 35(7), 1166–1172.
Khaleghi, F., Irai, A. E., Gupta, V. K., Agarwal, S., Bijad, M. & Abbasghorbani, M. (2016). Highly sensitive nanostructure voltammetric sensor employing Pt/CNTs and 1-butyl-3-methylimidazolium hexafluoro phosphate for determination of tryptophan in food and pharmaceutical samples. Journal of Molecular Liquids, 223, 431–435.
Khanavi, M., Hajimahmoodi, M., Ranjbar, A. M., Oveisi, M. R., Ardekani, M. R. S. & Mogaddam, G. (2012). Development of a green chromatographic method for simultaneous determination of food colorants. Food Analytical Methods, 5(3), 408–415.
Lee, K., Shiddiky, M. J. A., Park, S., Park, D. & Shim, Y. (2008). Electrophoretic analysis of food dyes using a miniaturized microfluidic system. Electrophoresis, 29(9), 1910–1917.
Martin, F., Oberson, J.-M., Meschiari, M. & Munari, C. (2016). Determination of 18 water-soluble artificial dyes by LC–MS in selected matrices. Food Chemistry, 197, 1249–1255.
Medeiros, R. A., Lourencao, B. C., Rocha-Filho, R. C. & Fatibello-Filho, O. (2012). Simultaneous voltammetric determination of synthetic colorants in food using a cathodically pretreated boron-doped diamond electrode. Talanta, 97, 291–297.
Miraki, M., Karimi-Maleh, H., Taher, M. A., Cheraghi, S., Karimi, F., Agarwal, S. & Gupta, V. K. (2019). Voltammetric amplified platform based on ionic liquid/NiO nanocomposite for determination of benserazide and levodopa. Journal of Molecular Liquids, 278, 672–676.
Motahharinia, M., Zamani, H. A. & Karimi Maleh, H. (2020). A sensitive electroanalytical sensor amplified with Pd-ZnO nanoparticle for determination of Sunset Yellow in real samples. Eurasian Chemical Communications, 760–770.
Nevado, J. J. B., Flores, J. R. & Llerena, M. J. V. (1997). Square wave adsorptive voltammetric determination of sunset yellow. Talanta, 44(3), 467–474.
Nigg, J. T., Lewis, K., Edinger, T. & Falk, M. (2012). Meta-analysis of attention-deficit/hyperactivity disorder or attention-deficit/hyperactivity disorder symptoms, restriction diet, and synthetic food color additives. Journal of the American Academy of Child & Adolescent Psychiatry, 51(1), 86–97.
Salmanpour, S., Sadrnia, A., Karimi, F., Majani, N., Yola, M. L. & Gupta, V. K. (2018). NiO nanoparticle decorated on single-wall carbon nanotubes and 1-butyl-4-methylpyridinium tetrafluoroborate for sensitive raloxifene sensor. Journal of Molecular Liquids, 254, 255–259.
Salmanpour, S., Tavana, T., Pahlavan, A., Khalilzadeh, M. A., Ensafi, A. A., Karimi-Maleh, H., Beitollahi, H., Kowsari, E. & Zareyee, D. (2012). Voltammetric determination of norepinephrine in the presence of acetaminophen using a novel ionic liquid/multiwall carbon nanotubes paste electrode. Materials Science and Engineering: C, 32(7), 1912–1918.
Sanghavi, B. J. & Srivastava, A. K. (2010). Simultaneous voltammetric determination of acetaminophen, aspirin and caffeine using an in situ surfactant-modified multiwalled carbon nanotube paste electrode. Electrochimica Acta, 55(28), 8638–8648.
Tatebe, C., Ohtsuki, T., Otsuki, N., Kubota, H., Sato, K., Akiyama, H. & Kawamura, Y. (2012). Extraction method and determination of Sudan I present in sunset yellow FCF by isocratic high-performance liquid chromatography. American Journal of Analytical Chemistry, 3(08), 570.
Tavana, T., Khalilzadeh, M. A., Karimi-Maleh, H., Ensafi, A. A., Beitollahi, H. & Zareyee, D. (2012). Sensitive voltammetric determination of epinephrine in the presence of acetaminophen at a novel ionic liquid modified carbon nanotubes paste electrode. Journal of Molecular Liquids, 168, 69–74.
Tsuboy, M. S., Angeli, J. P. F., Mantovani, M. S., Knasmüller, S., Umbuzeiro, G. A. & Ribeiro, L. R. (2007). Genotoxic, mutagenic and cytotoxic effects of the commercial dye CI Disperse Blue 291 in the human hepatic cell line HepG2. Toxicology in Vitro, 21(8), 1650–1655.
Vahedi, J., Karimi-Maleh, H., Baghayeri, M., Sanati, A. L., Khalilzadeh, M. A. & Bahrami, M. (2013). A fast and sensitive nanosensor based on MgO nanoparticle room-temperature ionic liquid carbon paste electrode for determination of methyldopa in pharmaceutical and patient human urine samples. Ionics, 19(12), 1907–1914.
Vladislavić, N., Buzuk, M., Rončević, I. Š. & Brinić, S. (2018). Electroanalytical Methods for Determination of Sunset Yellow—a Review. International Journal of Electrochemical Science, 13, 7008–7019.
Wang, J., Yang, B., Wang, H., Yang, P. & Du, Y. (2015). Highly sensitive electrochemical determination of Sunset Yellow based on gold nanoparticles/graphene electrode. Analytica Chimica Acta, 893, 41–48.
Wang, M., Sun, Q., Gao, Y., Yang, X. & Zhao, J. (2014). Determination of Sunset yellow in foods based on a facile electrochemical sensor. Analytical Methods, 6(21), 8760–8766.
Wang, P., Hu, X., Cheng, Q., Zhao, X., Fu, X. & Wu, K. (2010). Electrochemical detection of amaranth in food based on the enhancement effect of carbon nanotube film. Journal of Agricultural and Food Chemistry, 58(23), 12112–12116.
Wang, Y., Li, D., Kang, J., Guan, S. & Wu, D. (2019). An electrochemical sensor based on MB/Ag-ZnO/graphene modified glassy carbon electrode for determination of L-tryptophan in biofluid samples. International Journal of Electrochemical Science, 14, 5448–5461.
Xing, Y., Meng, M., Xue, H., Zhang, T., Yin, Y. & Xi, R. (2012). Development of a polyclonal antibody-based enzyme-linked immunosorbent assay (ELISA) for detection of Sunset Yellow FCF in food samples. Talanta, 99, 125–131.
Zabihpour, T., Shahidi, S.-A., Karimi-Maleh, H. & Ghorbani-HasanSaraei, A. (2020a). An ultrasensitive electroanalytical sensor based on MgO/SWCNTs-1-Butyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide paste electrode for the determination of ferulic acid in the presence sulfite in food samples. Microchemical Journal, 154, 104572.
Zabihpour, T., Shahidi, S.-A., Karimi-Maleh, H. & Ghorbani-HasanSaraei, A. (2020b). Voltammetric food analytical sensor for determining vanillin based on amplified NiFe 2 O 4 nanoparticle/ionic liquid sensor. Journal of Food Measurement and Characterization, 14, 1039–1045.
Zhang, J., Zhu, H., Wang, M., Wang, W. & Chen, Z. (2013). Electrochemical determination of sunset yellow based on an expanded graphite paste electrode. Journal of The Electrochemical Society, 160(8), H459–H462.
Zheng, X., Hu, Y., Li, H., Han, B., Lin, R. & Huang, B. (2020). N-doped carbon nanotube frameworks modified electrode for the selective sensing of hydroquinone and catechol. Journal of Electroanalytical Chemistry, 861, 113968.
Zhu, S., Gao, W., Zhang, L., Zhao, J. & Xu, G. (2014). Simultaneous voltammetric determination of dihydroxybenzene isomers at single-walled carbon nanohorn modified glassy carbon electrode. Sensors and Actuators B: Chemical, 198, 388–394.