ارزيابي و تدوين شاخصهاي تجويزي مصرف انرژي در ساختمان¬هاي اداري
الموضوعات :مهرداد محمودیان 1 , سجاد سعدی 2
1 - موسسه آموزش عالی آپادانا، شیراز، ايران
2 - مربی/دانشگاه امام حسین
الکلمات المفتاحية: شاخص, پايداري انرژي, بهينه سازي مصرف انرژي, دسته بندي مصرف انرژي,
ملخص المقالة :
بهبود مصرف انرژي و کاهش آلودگي محيط زيست از محورهاي اساسي پايداري انرژي است. حوزه ساختمان به عنوان يکي از بخشهاي اصلي مصرف انرژي، بيش از 40 درصد از مصرف انرژي کل را دارد. در اين مقاله، با بررسي بخشهاي مصرف کننده انرژي در¬ساختمان با استفاده از روش تحليل سلسله مراتبي به منظور برچسب دهي و بهينه سازي مصرف انرژي ساختمانهاي اداري، شاخصهاي تاثيرگذار شناسايي و معرفي شدهاند. در اين پژوهش ساختمانهاي اداري به کمک مطالعات پيشين به بخشهاي مختلف تقسيمبندي شده است و سپس در هر بخش شاخصهاي مربوطه از مرور ادبيات موضوع استخراج شده است. تعداد 62 شاخص در 12 بخش مختلف استخراج شد که پس از بررسي آماري به روشهاي آلفاي کرونباخ، CVR و CVI تعداد 47 شاخص مورد تاييد قرار گرفتند. به اين ترتيب که ۴7 شاخص تاييد شده اثرگذاري زيادي بر مصرف انرژي ساختمان دارند و شاخصهاي رد شده اثرگذاري کمتري نسبت به آنها دارند.
[1] Doukas, H., C. Nychtis, and J. Psarras, Assessing energy-saving measures in buildings through an intelligent decision support model. Building and environment, 2009. 44(2): p. 290-298.
[2] Harish, V. and A. Kumar, A review on modeling and simulation of building energy systems. Renewable and sustainable energy reviews, 2016. 56: p. 1272-1292.
[3] Ma, Z. and S. Wang, Building energy research in Hong Kong: a review. Renewable and Sustainable Energy Reviews, 2009. 13(8): p. 1870-1883.
[4] Zheng, G., et al., Application of life cycle assessment (LCA) and extenics theory for building energy conservation assessment. Energy, 2009. 34(11): p. 1870-1879.
[5] Balcomb, J.D. and A. Curtner. Multi-criteria decision-making process for buildings. in Energy Conversion Engineering Conference and Exhibit, 2000.(IECEC) 35th Intersociety. 2000. IEEE.
[6] Praseeda, K., B.V. Reddy, and M. Mani, Embodied and operational energy of urban residential buildings in India. Energy and Buildings, 2016. 110: p. 211-219.
[7] Lolli, N., S.M. Fufa, and M. Inman, A parametric tool for the assessment of operational energy use, embodied energy and embodied material emissions in building. Energy Procedia, 2017. 111: p. 21-30.
[8] Azar, E. and C.C. Menassa, A comprehensive analysis of the impact of occupancy parameters in energy simulation of office buildings. Energy and buildings, 2012. 55: p. 841-853.
[9] Ibn-Mohammed, T., et al., Operational vs. embodied emissions in buildings—A review of current trends. Energy and Buildings, 2013. 66: p. 232-245.
[10] Karimpour, M., et al., Minimising the life cycle energy of buildings: Review and analysis. Building and Environment, 2014. 73: p. 106-114.
[11] Hsieh, T.-Y., S.-T. Lu, and G.-H. Tzeng, Fuzzy MCDM approach for planning and design tenders selection in public office buildings. International journal of project management, 2004. 22(7): p. 573-584.
[12] Saidur, R., et al., An end-use energy analysis in a Malaysian public hospital. Energy, 2010. 35(12): p. 4780-4785.
[13] Ramesh, T., R. Prakash, and K. Shukla, Life cycle energy analysis of buildings: An overview. Energy and buildings, 2010. 42(10): p. 1592-1600.
[14] Cabeza, L.F., et al., Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: A review. Renewable and sustainable energy reviews, 2014. 29: p. 394-416.
[15] Xu, J., et al., A systematic approach for energy efficient building design factors optimization. Energy and Buildings, 2015. 89: p. 87-96.
[16] Yang, Y., B. Li, and R. Yao, A method of identifying and weighting indicators of energy efficiency assessment in Chinese residential buildings. Energy Policy, 2010. 38(12): p. 7687-7697.
[17] Ali, H.H. and S.F. Al Nsairat, Developing a green building assessment tool for developing countries–Case of Jordan. Building and environment, 2009. 44(5): p. 1053-1064.
[18] Hygh, J.S., et al., Multivariate regression as an energy assessment tool in early building design. Building and environment, 2012. 57: p. 165-175.
[19] Pérez-Lombard, L., et al., A review of HVAC systems requirements in building energy regulations. Energy and buildings, 2011. 43(2-3): p. 255-268.
[20] Cole, R.J. and N. Larsson, GBTool user manual. Otawa: Green Building Challenge, 2002.
[21] Yang, Y.-l., H.-x. Tai, and T. Shi, Weighting indicators of building energy efficiency assessment taking account of experts’ priority. Journal of Central South University, 2012. 19(3): p. 803-808.
[22] Addy, M.N., E. Adinyira, and J. Ayarkwa, Identifying and weighting indicators of building energy efficiency assessment in Ghana. Energy Procedia, 2017. 134: p. 161-170.
[23] Li, H., et al., A Systematic Classification for HVAC Systems and Components. 2017, Pacific Northwest National Lab.(PNNL), Richland, WA (United States).
[24] Farah Habib, Z.B., Maryam Ghasabani, Prioritization of Effective Building Energy Consumption Parameters Using AHP (In Persian). Naghsh-e Jahan, 2014: p. 55-61.
[25] Norozian, N., Optimized pattern for energy efficiency assessment in Tehran buildings (In Persian). Naghsh-e Jahan, 2016: p. 65-77.
[26] Taylor, J.G. and S.D. Ryder, Use of the Delphi method in resolving complex water resources issues 1. JAWRA Journal of the American Water Resources Association, 2003. 39(1): p. 183-189.
[27] Pérez, V.L. and R. Schüler, The Delphi method as a tool for information requirements specification. Information & Management, 1982. 5(3): p. 157-167.
[28] Edwards, D., T. Griffin, and B. Hayllar, Urban tourism research: developing an agenda. Annuals of Tourism Research, 2008. 35(4): p. 1032-1052.
[29] Regulations, N.B., National building regulations, No. 3 (In Persian). Road and building ministry, 2012.