تأثیر عصاره اتانولی صمغ کندر و ریشه شیرینبیان در کاهش میزان اکسیداسیون و محتوای آکریلآمید همبرگر گوشت گوساله تحت شرایط سرخ کردن سطحی
الموضوعات : فصلنامه کیفیت و ماندگاری تولیدات کشاورزی و مواد غذاییسحر یزدانمهر 1 , تکتم مستقیم 2
1 - کارشناس ارشد، گروه علوم و مهندسی صنایع غذایی، واحد شهر قدس، دانشگاه آزاد اسلامی، تهران، ایران
2 - استادیار، گروه علوم و صنایع غذایی، واحد شهر قدس، دانشگاه آزاد اسلامی، تهران، ایران
الکلمات المفتاحية: همبرگر, آکریلآمید, اکسیداسیون, صمغ کندر, ریشه شیرینبیان,
ملخص المقالة :
هدف از این تحقیق، بررسی کاربرد عصارههای الکلی صمغ کندر و ریشه شیرینبیان بهعنوان آنتیاکسیدانهای طبیعی بر کاهش تشکیل آکریلآمید و اکسیداسیون چربیها در همبرگر گوشت گوسالهی سرخ شده به روش سطحی بود. عصارههای صمغ کندر و ریشه شیرینبیان بهطور جداگانه در سطوح 1، 5/1 و 2% وزنی/وزنی به فرمولاسیون همبرگر اضافه شدند و نمونه حاوی ترکیب این دو عصاره (با نسبت 1:1) نیز آمادهسازی شد. سپس، نمونههای تهیه شده در دمای C° 170 به مدت 8 دقیقه سرخ گردیدند. نتایج بهدستآمده بیان کرد که عصارههای الکلی صمغ کندر و ریشه شیرینبیان اثر معنیداری بر pH همبرگر نداشتند. افزودن عصارههای صمغ کندر و شیرینبیان (در سطح 2%)، موجب کاهش معنیدار تشکیل آکریلآمید نسبت به نمونه شاهد، به ترتیب تا 95/32% و 87/49% گردید (05/0>p). با افزایش غلظت عصارههای صمغ کندر و شیرینبیان، فرآیند اکسیداسیون کاهش یافت، بهطوریکه اندیسهای پراکسید، آنیزیدین، اندیس تیوباربیتوریک اسید (TBA) و توتوکس نمونههای تیمار شده بهطور معنیداری کمتر از نمونه شاهد بود (05/0>p). عصاره ریشه شیرینبیان در سطح 2%، بالاترین فعالیت آنتیاکسیدانی را نسبت به سایر نمونهها داشت و نمونه ترکیبی و نمونه حاوی 5/1% عصاره ریشه شیرینبیان در رتبه بعدی قرار گرفتند. ارزیابی حسی نشان داد که عصارههای صمغ کندر و ریشه شیرینبیان بر بافت و رنگ همبرگر تأثیری نداشتند، درحالیکه با افزایش غلظت عصاره شیرینبیان در فرمولاسیون، امتیازات عطر و طعم و پذیرش کلی بهطور معنیداری کاهش یافت (05/0>p).
1. Berger LM, Witte F, Terjung N, Weiss J, Gibis M. Influence of Processing Steps on Structural, Functional, and Quality Properties of Beef Hamburgers. Appl Sci. 2022;12(15):7377.
2. Asokapandian S, Swamy GJ, Hajjul H. Deep fat frying of foods: A critical review on process and product parameters. Crit Rev Food Sci Nutr. 2020;60(20):3400–13.
3. Gholami F, Rahman A, Mostaghim T. Effects of rosemary and thyme extracts on acrylamide formation in fried beef. International Journal of Scientific Research in Science and Technology. 2017;3(4):352-60.
4. Abasian Rad AH, Salehifar M, Mostaghim T. The effect of using the bamboo leaf and Oregano (Mentha logifolia L.) essential oil on acrylamide content qualitative characteristics in Zwieback. J Food Technol Nutr. 2021; 18:61–74.
5. Dourado C, Pinto C, Barba FJ, Lorenzo JM, Delgadillo I, Saraiva JA. Innovative non-thermal technologies affecting potato tuber and fried potato quality. Trends Food Sci Technol. 2019; 88:274–89.
6. Rifai L, Saleh FA. A review on acrylamide in food: occurrence, toxicity, and mitigation strategies. Int J Toxicol. 2020;39(2):93–102.
7. Kuek SL, Tarmizi AHA, Abd Razak RA, Jinap S, Norliza S, Sanny M. Contribution of lipid towards acrylamide formation during intermittent frying of French fries. Food Control. 2020; 118:107430.
8. Mesias M, Delgado-Andrade C, Morales FJ. An updated view of acrylamide in cereal products. Curr Opin Food Sci. 2022; 46:100847.
9. Schouten MA, Tappi S, Angeloni S, Cortese M, Caprioli G, Vittori S, et al. Acrylamide formation and antioxidant activity in coffee during roasting–A systematic study. Food Chem. 2021; 343:128514.
10. Bachir N, Haddarah A, Sepulcre F, Pujola M. Formation, mitigation, and detection of acrylamide in foods. Food Anal Methods. 2022;15(6):1736–47.
11. Gomaa AA, Farghaly HA, Abdel-Wadood YA, Gomaa GA. Potential therapeutic effects of boswellic acids/Boswellia serrata extract in the prevention and therapy of type 2 diabetes and Alzheimer’s disease. Naunyn Schmiedebergs Arch Pharmacol. 2021;1–19.
12. Noreen S, Mubarik F, Farooq F, Khan M, Khan AU, Pane YS. Medicinal Uses of Licorice (Glycyrrhiza glabra L.): A Comprehensive Review. Open Access Maced J Med Sci. 2021;9(F):668–75.
13. Ahmad SNS, Tarmizi AHA, Razak RAA, Jinap S, Norliza S, Sulaiman R, et al. Selection of vegetable oils and frying cycles influencing acrylamide formation in the intermittently fried beef nuggets. Foods. 2021;10(2):257.
14. Basaran B, Faiz O. Determining the levels of acrylamide in some traditional foods unique to Turkey and risk assessment. Iran J Pharm Res IJPR. 2022;21(1).
15. Hasan MK, Ara I, Mondal MSA, Kabir Y. Phytochemistry, pharmacological activity, and potential health benefits of Glycyrrhiza glabra. Heliyon. 2021;7(6):e07240.
16. Kazlauskaite JA, Matulyte I, Marksa M, Lelesius R, Pavilonis A, Bernatoniene J. Application of Antiviral, Antioxidant and Antibacterial Glycyrrhiza glabra L., Trifolium pratense L. Extracts and Myristica fragrans Houtt. Essential Oil in Microcapsules. Pharmaceutics. 2023;15(2):464.
17. Mancini S, Preziuso G, Dal Bosco A, Roscini V, Szendrő Z, Fratini F, et al. Effect of turmeric powder (Curcuma longa L.) and ascorbic acid on physical characteristics and oxidative status of fresh and stored rabbit burgers. Meat Sci. 2015; 110:93–100.
18. Mekawi EM, Sharoba AM, Ramadan MF. Reduction of acrylamide formation in potato chips during deep-frying in sunflower oil using pomegranate peel nanoparticles extract. J food Meas Charact. 2019; 13:3298–306.
19. Heydari Ashkezari M, Salehifar M. Inhibitory effects of pomegranate flower extract and vitamin B3 on the formation of acrylamide during the donut making process. J Food Meas Charact. 2019; 13:735–44.
20. Nagpal T, Alam S, Khare SK, Satya S, Chaturvedi S, Sahu JK. Effect of Psidium guajava leaves extracts on thermo-lipid oxidation and Maillard pathway born food toxicant acrylamide in Indian staple food. J Food Sci Technol. 2021;1–9.
21. Trujillo-Mayol I, Sobral MMC, Viegas O, Cunha SC, Alarcón-Enos J, Pinho O, et al. Incorporation of avocado peel extract to reduce cooking-induced hazards in beef and soy burgers: A clean label ingredient. Food Res Int. 2021; 147:110434.
22. Ahmed AF, Attia FAK, Liu Z, Li C, Wei J, Kang W. Antioxidant activity and total phenolic content of essential oils and extracts of sweet basil (Ocimum basilicum L.) plants. Food Sci Hum Wellness. 2019;8(3):299–305.
23. Vergara H, Cózar A, Rubio N. Lamb meat burgers shelf life: Effect of the addition of different forms of rosemary (Rosmarinus Officinalis L.). CyTA-Journal Food. 2021;19(1):606–13.
24. Selani MM, Contreras-Castillo CJ, Shirahigue LD, Gallo CR, Plata-Oviedo M, Montes-Villanueva ND. Wine industry residues extract as natural antioxidants in raw and cooked chicken meat during frozen storage. Meat Sci. 2011;88(3):397–403.
25. Akbarmivehie M, Baghaei H. The Effect of Addition Parsnip Herb and its Extract on Momtaze Hamburger Shelf Life. Eur Online J, Nat Soc Sci 5 132. 2016;146.
26. Taeymans D, Wood J, Ashby P, Blank I, Studer A, Stadler RH, et al. A review of acrylamide: an industry perspective on research, analysis, formation, and control. Crit Rev Food Sci Nutr. 2004;44(5):323–47.
27. Ciesarová Z, Suhaj M, Horváthová J. Correlation between acrylamide contents and antioxidant capacities of spice extracts in a model potato matrix. J Food Nutr Res. 2008;47(1). 1-5.
28. Schieberle P, Köhler P, Granvogl M. New aspects on the formation and analysis of acrylamide. In: Chemistry and safety of acrylamide in food. Springer; 2005. p. 205–22.
29. Becalski A, Lau BP-Y, Lewis D, Seaman SW. Acrylamide in foods: occurrence, sources, and modeling. J Agric Food Chem. 2003;51(3):802–8.
30. Zhang Y, Xu W, Wu X, Zhang X, Zhang Y. Addition of antioxidant from bamboo leaves as an effective way to reduce the formation of acrylamide in fried chicken wings. Food Addit Contam. 2007;24(3):242–51.
31. Soncu ED, Kolsarıcı N, Akoğlu İT, Bektaş G. The effects of vacuum tumbling combined with sodium tripolyphosphate on lipolytic and oxidative changes in beef döner. GIDA. 2014; 39 (5): 259-266.
32. Peng X, Ma J, Cheng K-W, Jiang Y, Chen F, Wang M. The effects of grape seed extract fortification on the antioxidant activity and quality attributes of bread. Food Chem. 2010;119(1):49–53.
33. Fu Z, Yoo MJY, Zhou W, Zhang L, Chen Y, Lu J. Effect of (−)-epigallocatechin gallate (EGCG) extracted from green tea in reducing the formation of acrylamide during the bread baking process. Food Chem. 2018; 242:162–8.
34. Mahfouz M, Abd-Elnoor A V, El-Razek A, Ragwa I. The influence of adding turnip roots (Brassica rapa var. rapa L.) powder on the antioxidant activity and acrylamide content in some fried foods. Alexandria Sci Exch J. 2019; 40:717–30.
35. Grzesik M, Bartosz G, Stefaniuk I, Pichla M, Namieśnik J, Sadowska-Bartosz I. Dietary antioxidants as a source of hydrogen peroxide. Food Chem. 2019; 278:692–9.
36. Petrovic S, Arsic A, Ristic-Medic D, Cvetkovic Z, Vucic V. Lipid peroxidation and antioxidant supplementation in neurodegenerative diseases: a review of human studies. Antioxidants. 2020;9(11):1128.
37. Nassan MA, Soliman MM, Aldhahrani A, Althobaiti F, Alkhedaide AQ. Ameliorative impacts of Glycyrrhiza glabra root extract against nephrotoxicity induced by gentamicin in mice. Food Sci Nutr. 2021;9(7):3405–13.
38. Kochhar SP. Stabilisation of frying oils with natural antioxidative components. Eur J Lipid Sci Technol. 2000;102(8‐9):552–9.
39. Babu PAS, Aafrin BV, Archana G, Sabina K, Sudharsan K, Sivarajan M, et al. Effects of polyphenols from Caralluma fimbriata on acrylamide formation and lipid oxidation—An integrated approach of nutritional quality and degradation of fried food. Int J Food Prop. 2017;20(6):1378–90.
40. Manzoor S, Masoodi FA, Rashid R, Dar MM. Effect of apple pomace-based antioxidants on the stability of mustard oil during deep frying of French fries. LWT. 2022; 163:113576.
41. Erickson MD, Yevtushenko DP, Lu Z-X. Oxidation and thermal degradation of oil during frying: a review of natural antioxidant use. Food Rev Int. 2022;1–32.
42. Hrebień‐Filisińska A. Application of natural antioxidants in the oxidative stabilization of fish oils: A mini‐review. J Food Process Preserv. 2021;45(4): e15342.
43. Gutiérrez-del-Río I, López-Ibáñez S, Magadán-Corpas P, Fernández-Calleja L, Pérez-Valero Á, Tuñón-Granda M, et al. Terpenoids and polyphenols as natural antioxidant agents in food preservation. Antioxidants. 2021;10(8):1264.
44. Manessis G, Kalogianni AI, Lazou T, Moschovas M, Bossis I, Gelasakis AI. Plant-derived natural antioxidants in meat and meat products. Antioxidants. 2020;9(12):1215.
45. Blasi F, Cossignani L. An overview of natural extracts with antioxidant activity for the improvement of the oxidative stability and shelf life of edible oils. Processes. 2020;8(8):956.
46. Abdel-Hamied AA, Nassar AG, El-Badry N. Investigations on antioxidant and antibacterial activities of some natural extracts. World J Dairy Food Sci. 2009;4(1):1–7.
47. De Abreu DAP, Losada PP, Maroto J, Cruz JM. Evaluation of the effectiveness of a new active packaging film containing natural antioxidants (from barley husks) that retard lipid damage in frozen Atlantic salmon (Salmo salar L.). Food Res Int. 2010;43(5):1277–82.
48. Viana da Silva M, Santos MRC, Alves Silva IR, Macedo Viana EB, Dos Anjos DA, Santos IA, et al. Synthetic and natural antioxidants used in the oxidative stability of edible oils: An overview. Food Rev Int. 2022;38(sup1):349–72.
49. Mishra SK, Belur PD, Iyyaswami R. Comparison of efficacy of various natural and synthetic antioxidants in stabilizing the fish oil. J Food Process Preserv. 2022; e16970.
50. Mansour HMM, El-Sohaimy SA, Zeitoun AM, Abdo EM. Effect of natural antioxidants from fruit leaves on the oxidative stability of soybean oil during accelerated storage. Antioxidants. 2022;11(9):1691.
51. Sharma V, Agrawal RC. Glycyrrhiza glabra-a plant for the future. Mintage J Pharm Med Sci. 2013;2(3):15–20.
52. Al-Harrasi A, Al-Saidi S. Phytochemical analysis of the essential oil from botanically certified oleogum resin of Boswellia sacra (Omani Luban). Molecules. 2008;13(9):2181–9.
53. Ribeiro JS, Santos MJMC, Silva LKR, Pereira LCL, Santos IA, da Silva Lannes SC, et al. Natural antioxidants used in meat products: A brief review. Meat Sci. 2019; 148:181–8.
54. Viuda-Martos M, Ruiz-Navajas Y, Fernández-López J, Pérez-Álvarez JA. Effect of adding citrus waste water, thyme and oregano essential oil on the chemical, physical and sensory characteristics of a bologna sausage. Innov Food Sci Emerg Technol. 2009;10(4):655–60.