تعیین محتوای غذایی و بررسی فعالیت آنتی اکسیدانی و ضد سرطانی عصاره مالت استخراج شده از دانه کینوا: مطالعه مقایسهای بین روش فراصوت و بن ماری
کاظم روشنی
1
(
Kazem Roshani - Bachelor of Science M.Sc Student of Food Science and Technology، Quality Control and Hygiene، Islamic Azad University Science and Research Branch
)
مژگان امتیازجو
2
(
گروه بیولوژی دریا، دانشکده علوم و فون دریایی دانشگاه آزاد اسلامی واحد تهران شمال
)
محمد ربانی
3
(
)
محمد جواد شکوری
4
(
صنایع غذایی، دانشگاه ازاد اسلامی واحد تهران شمال
)
سارا موحد
5
(
گروه علوم وصنایع غذایی، واحد ورامین-پیشوا، دانشگاه آزاد اسلامی، ورامین، ایران.
)
الکلمات المفتاحية: کینوا, مالت, روش اولتراسونیک, روش بن ماری, خاصیت ضد سرطان,
ملخص المقالة :
در این تحقیق، عصاره مالت بذر کینوا با استفاده از ترکیبی از روشهای اولتراسونیک و بین ماری به دست آمد. زمان اولتراسونیک (۵۰-5 دقیقه) و زمان بن ماری (۱۸۰-۲0 دقیقه) بر اساس حداکثر درصد آنتی اکسیدان بهینه شد. دمای بن ماری بین 40 تا 45 درجه سانتیگراد در نظر گرفته شد. تأثیر پارامترهای مختلف از جمله نسبت حلالها، دمای بن ماری و دمای استخراج با زمانهای اولتراسونیک و بنماری انتخابی بر روی خواص عصاره مالت در نظر گرفته شد. حداکثر مقدار فعالیت مهار رادیکال آنتی اکسیدان به ترتیب به زمان 5 دقیقه (7/47 درصد) و 120 دقیقه (4/40 درصد) برای روش اولتراسونیک و بن ماری اختصاص یافت. عصاره مالت کینوا فعالیت آنتی اکسیدانی خوبی با مقدار کمتر IC50 معادل ۱۱/۱۹ میلیگرم بر میلی لیتر نشان داد. محتوای فنل کل و محتوای فلاونوئید کل به ترتیب از 35/534 تا 49/2793 میلیگرم معادل اسید گالیک بر ۱۰۰ گرم و 12/0 تا 22/3 میلیگرم کوئرستین بر ۱۰۰ گرم بود. محتوای پروتئین بالا (۳۷/۲ درصد) با اتانول: آب (۲۵:۷۵ درصد)، زمان اولتراسونیک 15 دقیقه، زمان بن ماری 120 دقیقه، دمای بن ماری 4۵-4۰ درجه سانتیگراد و دمای استخراج 25 درجه سانتیگراد به دست آمد. میزان ویتامین B6 (پیریدوکسین) و ویتامین B9 (اسید فولیک) به ترتیب در محدوده ۸/۰ تا ۷۶/۲ میلیگرم بر 100 گرم و ۳۴/۲ تا ۵۹/۲ میلیگرم بر 100 گرم بود. بیشترین میزان مواد معدنی حاوی کلسیم، منیزیم، فسفر و آهن در عصاره مالت به ترتیب 46/49، 89/74، 75/115 و 49/5 میلیگرم بر 100 گرم بود. بهترین اثر ضد سرطانی بر روی ردههای سلولی HT29 با زنده ماندن سلولی 31/98 درصد و سپس 42/94 درصد با غلظت 25/31 میکروگرم بر میلیلیتر عصاره مالت کینوا مشاهده شد. این عصاره مالت به عنوان منبعی از غذاهای کاربردی میتواند نقش مهمی در پیشگیری از سرطان داشته باشد.
[1] Abdelaleem, M.A. Elbassiony, K.R.A. (2021) Evaluation of phytochemicals and antioxidant activity of gamma irradiated quinoa (Chenopodium quinoa). Brazilian Journal of Biology, 81: 806-813.
[2] Abd El-Hakim, A.F. Mady, E. Abou Tahoun, A.M. Ghaly, M.S.A. Eissa, M.A. (2022) Seed Quality and Protein Classification of Some Quinoa Varieties. Journal of Ecological Engineering, 23: 24–33.
[3] Adriana Meneguetti, Q. Adriana Brenzan, M. Regina Batista, M. Barbosa Bazotte, R. Rodrigues Silva, D. Aparıcio Garcia Cortez, D. (2011) Biological Effects of Hydrolyzed Quinoa Extract from Seeds of Chenopodium quinoa Willd. Journal of Medicinal Food, 14: 653–657.
[4] Aguilar, J. Claudio Miano, A. Obregon, J. Soriano-Colchado, J. Barraza-Jauregui, G. (2019) Malting process as an alternative to obtain high nutritional quality quinoa flour. Journal of Cereal Science, 90: 102858.
[5] Alaburda, J. de Almeida, A.P. Shundo, L. Ruvieri, V. Sabino, M. (2008) Determination of folic acid in fortified wheat flours. Journal of Food Composition and Analysis, 21: 336–342.
[6] Almaguer, C. Kollmannsberger, H. Gastl, M. Becker, T. (2023) Characterization of the aroma profile of quinoa (Chenopodium quinoa Willd.) and assessment of the impact of malting on the odor-active volatile composition. Journal of The Science of Food and Agriculture, 103: 2283-2294.
[7] Ariel Carciochi, R. Galván-D'Alessandro, L. Vandendriessche, P. Chollet, S. (2016) Effect of Germination and Fermentation Process on the Antioxidant Compounds of Quinoa Seeds. Plant Foods for Human Nutrition, 71: 361-367.
[8] Ariel Carciochi, R. Dimitrov, K. Galvan D´Alessandro, L. Effect of malting conditions on phenolic content, Maillard reaction products formation, and antioxidant activity of quinoa seeds. Journal of Food Science and Technology, 53: (2016) 3978–3985.
[9] Bhinder, S. Kumari, S. Singh, B. Kaur, A. Singh, N. (2021) Impact of germination on phenolic composition, antioxidant properties, antinutritional factors, mineral content and Maillard reaction products of malted quinoa flour. Food Chemistry, 346: 128915.
[10] Borges, L.L. Alves, S.F. Sampaio, B.L. Conceição, E.C. Teresa F. Bara, M. Paula, J.R. (2013) Environmental factors affecting the concentration of phenolic compounds in Myrcia tomentosa leaves. Brazilian Journal of Pharmacognosy, 23: 230-238.
[11] Carlos Enciso-Roca, E. Javier Aguilar-Felices, E. Aldo Tinco-Jayo, J. Luis Arroyo-Acevedo, J. Herrera-Calderon, O. (2021) Biomolecules with Antioxidant Capacity from the Seeds and Sprouts of 20 Varieties of Chenopodium quinoa Willd. (Quinoa), Plants. 10: 2417.
[12] Carreira-Casais, A. Otero, P. Garcia-Perez, Garcia-Oliveira, P. Pereira, A.G. Carpena, M. Soria-Lopez, A. Simal-Gandara, J. Prieto, M.A. (2021) Benefits and Drawbacks of Ultrasound-Assisted Extraction for the Recovery of Bioactive Compounds from Marine Algae. International Journal of Environmental Research and public Health, 18: 9153.
[13] Ceyhun Sezgin, A. Sanlier, N. (2019) A New Generation Plant For The Conventional Cuisine: Quinoa (Chenopodium Quinoa Willd.). Trends in Food Science & Technology, 86: 51-58.
[14] Chang, C.C. Yang, M.H. Wen, H.M. Chern, J.C. (2002) Estimation of total flavonoid content in propolis by two complementary colometric methods. Journal of Food and Drug Analysis, 10: 178-182.
[15] Chen, X. Zhang, Y. Cao, B. Wei, X. Shen, Z. Su, N. (2023) Assessment and comparison of nutritional qualities of thirty quinoa (Chenopodium quinoa Willd.) seed varieties, Food Chemistry: X, 19: 100808.
[16] Choque-Quispe, D. Ligarda-Samanez, C.A. Ramos-Pacheco, B.S. Leguía-Damiano, S. Calla-Florez, M. Magaly Zamalloa-Puma, L. Colque-Condeña, L. (2021) Phenolic Compounds, Antioxidant Capacity, and Protein Content of Three Varieties of Germinated Quinoa (Chenopodium quinoa Willd), Ingenieria e Investigación. 41: e89831.
[17] Contreras-Jiménez, B. Del Real, A. Millan-Malo, B.M. Gaytán-Martínez, M. Morales-Sánchez, E. Rodríguez-García, M.E. (2019) Physicochemical changes in barley starch during malting. Journal of the Institude of Brewing, 125: 10-17.
[18] Hälvin, K. Nisamedtinov, I. Paalme, T. (2014) Comparison of different extraction methods to determine free and bound forms of B-group vitamins in quinoa. Analytical and Bioanalytical Chemistry, 406: 7355–7366.
[19] Han,Y. Chi, J. Zhang, M. Zhang, Fan, R.S. Dong, L. Huang, F. Liu, L. (2019) Changes in saponins, phenolics and antioxidant activity of quinoa (Chenopodium quinoa willd) during milling process. LWT, 114: 108381.
[20] Herrero, M. Cifuentes, A. Ibanez, E. (2006) Sub- and supercritical fluid extraction of functional ingredients from different natural sources: Plants, food-by-products, algae and microalgae A review. Food Chemistry, 98: 136–148.
[21] Hirose, Y. Fujita, T. Ishii, T. Ueno, N. (2010) Antioxidative properties and flavonoid composition of Chenopodium quinoa seeds cultivated in Japan, Food Chemistry. 119: 1300–1306.
[22] Hu, Y. Zhang, J. Zou, L. Fu, C. Li, P. Zhao, G. (2017) Chemical characterization, antioxidant, immune-regulating and anticancer activities of a novel bioactive polysaccharide from Chenopodium quinoa seeds. International Journal of Biological Macromolecules, 99: 622-629.
[23] Hur, J. Thanh Hanh Nguyen, T. Park, N. Kim, J. Kim, D. (2018) Characterization of quinoa (Chenopodium quinoa) fermented by Rhizopus oligosporus and its bioactive properties. AMB Express, 8: 143.
[24] Hwa Park, J. Jin Lee, Y. Ho Kim, Y. Sun Yoon, K. (2017) Antioxidant and Antimicrobial Activities of Quinoa (Chenopodium quinoa Willd.) Seeds Cultivated in Korea. Preventive Nutrition and Food Science, 22: 195-202.
[25] Ju, X. Wu, X. Chen, Y. Cui, S. Cai, Z. Zhao, L. Hao, Y. Zhou, F. Chen, F. Yu, Z. Yang, D. (2023) Mucin Binding Protein of Lactobacillus casei Inhibits HT-29 Colorectal Cancer Cell Proliferation. Nutrients, 15: 2314.
[26] Karen Diaz-Valencia, Y. José Alca, J. Antonia Calori-Domingues, M. Jackeline Zanabria-Galvez, S. Helena Da Cruz, S. (2018) Nutritional composition, total phenolic compounds and antioxidant activity of quinoa (Chenopodium quinoa Willd.) of different colours. Nova Biotechnol Chim, 17: 74-85.
[27] Konishi, Y. Hirano, S. Tsuboi, H. Wada, M. (2004) Distribution of Minerals in Quinoa (Chenopodium quinoa Willd.) Seeds. Bioscience Biotechnology and Biochemistry, 68: 231-234.
[28] Kumar, M. Singh, A. Bharti, A. Sharma, M. (2021) Effect of Malt ing Process on Nutritional and Physical Characteristics of Quinoa. Astha Foundation, Meerut (U.P.) India, 9: 2894-2899.
[29] Lopez-Moreno, M. Sabater-Munoz, B. Teresa Iglesias-Lopez, M. Miguel-Castro, M. Garces-Rimon, M. (2023) Red Quinoa hydrolysates with antioxidant bioactive properties on oxidative stress-induced Saccharomyces cerevisiae. LWT-Food Science and Technology, 184: 115038.
[30] Mehta, N. Jeyapriya, S. Kumar, P. Verma, A.K. Umaraw, P. Kumar Khatkar, S. Boora Khatkar, A. Pathak, D. Kaka, U. Qurni Sazili, A. (2022) Ultrasound-Assisted Extraction and the Encapsulation of Bioactive Components for Food Applications. Foods, 11: 2973.
[31] Moga, D.K. Adipo, N. Matu, E.N. Ng’ang’a, J. Kirira, P.J. (2021) Antioxidant and Antiproliferative Activity of Azadirachta indica A. Juss Extracts against Cancer Cell Lines: An experimental study. African Journal of Health Sciences. 34: 650-656.
[32] Mu, H. Xue, S. Sun, Q. Shi, J. Zhang, D. Wang, D. Wei, J. (2023) Research Progress of Quinoa Seeds (Chenopodium quinoaWild.): Nutritional Components, Technological Treatment, and Application, Foods. 12: 2087.
[33] Mufari, J.R. Rodríguez-Ruiz, A.C. Bergesse, A.E. Miranda-Villa, P.P. Nepote, V. Velez, A.R. (2021) Bioactive compounds extraction from malted quinoa using water-ethanol mixtures under subcritical conditions. LWT - Food Science and Technology, 138: 110574.
[34] Navruz Varli, S. Şanlıer, N. (2016) Nutritional and health benefits of quinoa (Chenopodium quinoa Willd.). Journal of Cereal Science, 69: 371-376.
[35] Patel, S. Gheewala, N. Suthar, A. Shah, A. (2009) In-Vitro cytotoxicity activity of Solanum Nigrum extract against Hela cell line and Vero cell line. International Journal of Pharmacy and Pharmaceutical Sciences, 1: 38-46.
[36] Pathan, S. Siddiquim, R.A. (2022) Nutritional Composition and Bioactive Components in Quinoa (Chenopodium quinoaWilld.) Greens: A Review. Nutrients, 14: 558.
[37] Rodríguez-Meizoso, I. Jaime, L. Santoyo, S. Senoráns, F.J. Cifuentes, A. Ibánez, E. (2010) Subcritical water extraction and characterization of bioactive compounds from Haematococcus pluvialis microalga. Journal of Pharmaceutical and Biomedical Analysis, 51: 456–463.
[38] Romano, N. Micaela Ureta, M. Guerrero-Sánchez, M. Gómez-Zavaglia, A. (2020) Nutritional and technological properties of a quinoa (Chenopodium quinoa Willd.) spray-dried powdered extract. Food Research International, 129: 108884.
[39] Romina Mufari, J. Adrián Gorostegui, H. Paola Miranda-Villa, P. Estefanía Bergesse, A. Calandri, E.L. (2020) Oxidative Stability and Characterization of Quinoa Oil Extracted from Wholemeal and Germ Flours. Journal of the American Oil Chemists' Society, 97: 57-66.
[40] Sabah, S. Sharifan, A. Akhonzadeh Basti, A. Jannat, B. TajAbadi Ebrahimi, M. (2021) Use of D-optimal combined design methodology to describe the effect of extraction parameters on the production of quinoa–barley malt extract by superheated water extraction. Food Science & Nutrition, 9: 2147–2157.
[41] Sanchez-García, J. Munoz-Pina, S. García-Hern´andez, J. Heredia, A. Andres, A. (2023) Fermented quinoa flour: Implications of fungal solid-state bioprocessing and drying on nutritional and antioxidant properties. LWT - Food Science and Technology, 182: 114885.
[42] Sayyari, Z. Rabani, M. Farahmandfar, R. Esmaeilzadeh Kenari, R. Mousavi Nadoshan, R. (2021) The Effect of Nanocomposite Edible Coating Enriched with Foeniculum vulgare Essential Oil on the Shelf Life of Oncorhynchus mykiss Fish Fillets during the Storage. Journal of Aquatic Food Product Technology, 30: 579-595.
[43] Sekhavatizadeh, S.S. Hosseinzadeh, S. Mohebbi, G. (2021) Nutritional, antioxidant and polyphenol content of quinoa (Chenopodium quinoa Willd.) cultivated in Iran, Future of Food: Journal on Food. Agriculture and Society, 9: 1-12.
[44] Shalashvili, A. Ugrekhelidze, D. Mitaishvili, T. Targamadze, I. Zambakhidze, N. (2012) Phenolic Compounds of Wines from Georgian Autochthonous Grapes, Rkatsiteli and Saperavi, Prepared by Georgian (Kakhetian) Technology. Bulletin of the Georgian National Academy of Sciences, 6: 99-103.
[45] Sharma, S. Kataria, A. Singh, B. (2022) Effect of thermal processing on the bioactive compounds, antioxidative, antinutritional and functional characteristics of quinoa (Chenopodium quinoa). LWT - Food Science and Technology, 160: 113256.
[46] Shen, Y. Zheng, L. Peng, Y. Zhu, X. Liu, F. Yang, X. Li, H. (2022) Physicochemical, Antioxidant and Anticancer Characteristics of Seed Oil from Three Chenopodium quinoa Genotypes, Molecules. 27: 2453.
[47] Stikić, R.I. Milinčić, D.D. Kostić, A.Ž. Jovanović, Z.B. Gašić, U.M. Lj. Ž. Tešić, Djordjević, N.Z. Savić, S.K. Czekus, B.G. Pešić, M.B. (2020) Polyphenolic profiles, antioxidant, and in vitro anticancer activities of the seeds of Puno and Titicaca quinoa cultivars, Cereal Chemistry. 97: 626-633.
[48] Tang, Y. Li, X. Chen, P.X. Zhang, B. Hernandez, M. Zhang, H. Marcone, M.F. Liu, R. Tsao, R. (2015) Characterization of fatty acid, carotenoid, tocopherol/tocotrienol compositions and antioxidant activities in seeds of three Chenopodium quinoa Willd. Genotypes. Food Chemistry, 174: 502-508.
[49] Wanole, P.D. Pawar, V.S. Dhadke, S.G. (2022) Effect of Malting on Nutritional and Anti-nutritional Properties of Quinoa (Chenopodium quinoa). Biological Forum – An International Journal, 14: 104-108.
[50] Whitehurst, R.J. Oort, M.V. Enzymes in Food Technology, Wiley-Blackwell, Second edition, (2009), pp. 1-359.
[51] Wu, G. Nutritional Properties of Quinoa, John Wiley & Sons, Inc. Chapter 11, (2015), pp. 193-210.
[52] Yawadio Nsimba, R. Kikuzaki, H. Konishi, Y. (2008) Antioxidant activity of various extracts and fractions of Chenopodium quinoa and Amaranthus spp. Seeds. Food Chemistry, 106: 760–766.
[53] Yi Ng, C. Wang, M. (2021) The functional ingredients of quinoa (Chenopodium quinoa) and physiological effects of consuming quinoa: A review. Food Frontiers, 2: 329-356.