Study on Nut Shell Lignification Progress in Hazelnut (Corylus avellana L.) cv. Segorbe
الموضوعات :Julien Toillon 1 , Julie Robin 2 , Maud Thomas 3 , Rachid Hamidi 4
1 - Association Nationale des Producteurs de Noisettes (ANPN), 1500 route de Monbahus, Cancon, France
2 - Association Nationale des Producteurs de Noisettes (ANPN), 1500 route de Monbahus, Cancon, France
3 - Unicoque, Noix et Noisettes de France, 1500 route de Monbahus, Cancon, France
4 - Association Nationale des Producteurs de Noisettes (ANPN), 1500 route de Monbahus, Cancon, France
الکلمات المفتاحية: Phenology, growth curve, Filbert, Belted hazelnuts, Environmental stressors, Sclereid, Shell hardening,
ملخص المقالة :
Seed protection is a key element in plant survival and plant dispersion. In hazelnuts, shell lignification begins from the tip to the basal scar. Therefore, hardening time is a race between seed survival against environmental stress. While new pests and stochastic weather events are increasing, fundamental shell lignification features are missing in the common Segorbe cultivar. In this purpose, progress of lignification was studied using hardness and morphological changes in fresh and dried Segorbe hazelnuts collected weekly in 2020 and 2021, respectively. The growing degree days (GDD) were calculated for key lignification process stages. In dried hazelnuts, the lignification process causes morphological deformation lead to belted hazelnut symptoms. Lignification increased progressively from week 22 (1353.6 GDD) to week 26 (1353.6 GDD). Shell length was 48–84% of their final size. The shell was fully lignified at week 27 with a kernel size of 4.99±0.32 mm. In fresh nuts, shell size increased from 83 to 92%, and hardening increased by a factor of 2.85, reaching 21 kgf, between weeks 25 and 26 (2272.8 GDD), with a kernel size of 4.75±2.05 mm. Lignification occurs in four weeks. When kernel size is ~5 mm, and shell growth ends, a hard wall protects the kernel from stressors. Belted hazelnut symptoms, reflected in the ratio of lignified and shriveled shell parts, and shell hardness, are discussed in the context of the susceptibility of Segorbe cultivars to environmental stressors.
An N, Turp MT, Türkeş M, Kurnaz ML (2020) Mid-Term Impact of Climate Change on Hazelnut Yield. Agriculture 10, 159. 10.3390/agriculture10050159.
Caramiello R, Me G, Radicati L (2000) Structure and characteristics of the hazelnut shell in different cultivars and their agronomic and industrial influence. Acta Horticulturae. 195–208. 10.17660/ActaHortic.2000.517.23.
Chambers U, Walton VM, Mehlenbacher SA (2011) Susceptibility of Hazelnut Cultivars to Filbertworm, Cydia latiferreana. HortScience. 46, 1377–1380. 10.21273/ HORTSCI.46.10.1377.
Črepinšek Z, Štampar F, Kajfež-Bogataj L, Solar A (2012) The response of Corylus avellana L. phenology to rising temperature in north-eastern Slovenia. International Journal of Biometeorology. 56, 681–694. 10.1007/s00484-011-0469-7.
Cristofori V, Bertazza G, Bignami C (2015) Changes in kernel chemical composition during nut development of three Italian hazelnut cultivars. Fruits. 70, 311–322. 10.1051/fruits/2015025.
Dardick C, Callahan AM (2014) Evolution of the fruit endocarp: molecular mechanisms underlying adaptations in seed protection and dispersal strategies. Frontiers in Plant Science. 5. 10.3389/fpls.2014.00284.
Gantner M (2009) The role of tannins in the resistance of hazelnut cultivated in Poland to the major pests. Acta Horticulturae. 471–478. 10.17660/ActaHortic.2009.845.73.
Germain E (1994) The reproduction of hazelnut (Corylus avellana L.): a review. Acta Horticulturae. 195–210. 10.17660/ ActaHortic. 1994.351.19.
Germain É, Sarraquigne JP (2004) Le noisetier (Éd. Centre technique interprofessionnel des fruits et légumes).
Guidone L, Valentini N, Rolle L, Me G, Tavella L (2007) Early nut development as a resistance factor to the attacks of Curculio nucum (Coleoptera: Curculionidae). Annals of Applied Biology. 150, 323–329. 10.1111/j.1744-7348.2007.00133.x.
Hamidi R, Calvy M, Valentie E, Driss L, Guignet J, Thomas M, Tavella L (2022a) Symptoms resulting from the feeding of true bugs on growing hazelnuts. Entomologia Experimentalis et Applicata. 170, 477–487. 10.1111/eea.13165.
Hamidi R, Toillon J, Thomas M (2022b) Underestimated Damage Caused by the European Hazelnut Weevil, Curculio nucum (Curculionidae). Agronomy. 12, 3059. 10.3390/agronomy12123059.
Hedstrom CS, Shearer PW, Miller JC, Walton VM (2014) The Effects of Kernel Feeding by Halyomorpha halys (Hemiptera: Pentatomidae) on Commercial Hazelnuts. Journal of Economic Entomology. 107, 1858–1865. 10.1603/EC14263.
Huss JC, Antreich SJ, Bachmayr J, Xiao N, Eder M, Konnerth J, Gierlinger N (2020) Topological Interlocking and Geometric Stiffening as Complementary Strategies for Strong Plant Shells. Advanced Materials. 32, 2004519. 10.1002/adma.202004519.
Jahanbani R, Ghaffari SM, Salami M, Vahdati K, Sepehri H, Namazi Sarvestani N, Sheibani N, Moosavi-Movahedi AA (2016) Antioxidant and anticancer activities of walnut (Juglans regia L.) protein hydrolysates using different proteases. Plant Foods and Human Nutrition. 71, 402-409.
Laborde J, Thompson K (2009) Post-dispersal fate of hazel (Corylus avellana) nuts and consequences for the management and conservation of scrub-grassland mosaics. Biological Conservation. 142, 974–981. 10.1016/j.biocon.2009.01.024.
Laks PE (1989) Condensed Tannins as a Source of Novel Biocides. In Chemistry and Significance of Condensed Tannins R. W. Hemingway, J. J. Karchesy, and S. J. Branham, eds. (Springer US), pp. 503–515. 10.1007/978-1-4684-7511-1_32.
Lopes LC, Martins J, Esteves B, De Lemos LT (2012) New products from hazelnut shell. Proceedings of the ECOWOOD.
Moraglio S, Guidone L, Tavella L, Valentini N, Me G (2009) Susceptibility of hazelnut to the attacks of the nut weevil and other pests. Acta Horticulturae. 445–450. 10.17660/ActaHortic.2009.845.69.
Moraglio ST, Tavella L, Valentini N, Rolle L (2014) Incidence of damage by nut weevil on different hazelnut cultivars in northwestern Italy. Acta Horticulturae. 293–296. 10.17660/ActaHortic.2014.1052.40.
Nazarideljou MJ, Azizi M (2015) Postharvest assessment of lignifying enzymes activity, flower stem lignification and bending disorder of gerbera cut flower. International Journal of Horticultural Science and Technology. 2(1), 87-95. doi: 10.22059/ ijhst.2015.54267
Paradinas A, Ramade L, Mulot-Greffeuille C, Hamidi R, Thomas M, Toillon J (2022) Phenological growth stages of ‘Barcelona’ hazelnut (Corylus avellana L.) described using an extended BBCH scale. Scientia Horticulturae. 296, 110902. 10.1016/j.scienta.2022.110902.
Perea R, San Miguel A, Gil L (2011) Disentangling factors controlling fruit and seed removal by rodents in temperate forests. Seed Science Research. 21, 227–234. 10.1017/ S0960258511000122.
Piskornik Z (1994) Relationship between the resistance of hazelnut cultivars to the hazelnut weevil and the content of sugars, amino acids, and phenols in the endocarp tissue of growing nuts. Acta Horticulturae. 617–624. 10.17660/ActaHortic.1994.351.68.
Piskornik Z, Mazur A, Koralikowska K, Maziarz B, Dębski J (1989) The resistance of hazel (Corylus avellana) to hazelnut weevil (Curculio nucum L.- Coleoptera, Curculionidae). Part II. The physicochemical characteristics of the pericarp and dynamics of nut development and cultivar resistance to the pest. Acta Agrobotanica. 42, 153–164. 10.5586/aa.1989.012.
Schüler P, Speck T, Bührig-Polaczek A, Fleck C (2014) Structure-Function Relationships in Macadamia integrifolia Seed Coats – Fundamentals of the Hierarchical Microstructure. PLoS ONE. 9, e102913. 10.1371/journal.pone.0102913.
Tavella L, Arzone A, Sargiotto C, Sonnati C (1997) Coreidae and Pentatomidae harmful to hazelnuts in northern Italy (Rhynchota Heteroptera). Acta Horticulturae. 503–510. 10.17660/ActaHortic.1997.445.65.
Thompson BG, Benjamin G (1941) The control of the filbert moth. available online on https://ir.library.oregonstate.edu/concern/administrative_report_or_publications/wh246s420.
Toillon J, Hamidi R, Driss L, Jouteux R, Lefrançois A, Bardou A, Paradinas A, Salaün G, Ramade L, Thomas M (2021a) Rapport d’activité ANPN, Exercice 2020 (ANPN).
Toillon J, Paradinas A, Hamidi R, Thomas M (2021b) Dynamic of fruit growth in early, mid, and late-season hazelnut cultivars. 1st International Symposium on Reproductive Biology of Fruit Tree Species. Montpellier. France 08-12 November.
Valentini N, Moraglio ST, Rolle L, Tavella L, Botta R (2015) Nut and kernel growth and shell hardening in eighteen hazelnut cultivars (Corylus avellana L.). Horticultural Science (Prague). 42, 149–158. 10.17221/327/2014-HORTSCI.
Valentini N, Rolle L, Stévigny C, Zeppa G (2006) Mechanical behaviour of hazelnuts used for table consumption under compression loading. Journal of the Science of Food and Agriculture. 86, 1257–1262. 10.1002/jsfa.2486.
van Wijk L (2022) Breaking the cycle: Incidence and damage control of the nut weevil (Coleoptera: Curculionidae: Curculio nucum l. 1758) in agroforestry systems in the netherlands. Working towards ecologically based integrated pest management. Master thesis, Wageningen, University & Research.
Vander Wall SB (2001) The evolutionary ecology of nut dispersal. The Botanical Review. 67, 74–117. 10.1007/BF02857850.
Vander Wall SB (2010) How plants manipulate the scatter-hoarding behaviour of seed-dispersing animals. Philosophical Transactions of the Royal Society B: Biological Sciences. 365, 989–997. 10.1098/rstb.2009.0205.
Zohner CM, Mo L, Renner SS, Svenning JC, VitasseY, Benito BM, Ordonez A, Baumgarten F, Bastin JF., Sebald V, (2020) Late-spring frost risk between 1959 and 2017 decreased in North America but increased in Europe and Asia. Proceedings of the National Academy of Sciences. 117, 12192–12200. 10.1073/pnas.1920816117.