بررسی اثر محلولپاشی متانول و اسیدآسکوربیک بر عملکرد و صفات فیزیولوژیک مرتبط با روابط آبی بادامزمینی در شرایط دیم
الموضوعات : مجله علمی- پژوهشی اکوفیزیولوژی گیاهیمارال مرادی توچایی 1 , سعید سیف زاده 2 , حمیدرضا ذاکرین 3 , سید علیرضا ولدآبادی 4
1 - دانشگاه آزاد اسلامی واحد تاکستان، گروه زراعت، تاکستان، ایران
2 - گروه زراعت، واحد تاکستان، دانشگاه آزاد اسلامی، تاکستان، ایران
3 - گروه زراعت، واحد تاکستان، دانشگاه آزاد اسلامی، تاکستان، ایران
4 - گروه زراعت، واحد تاکستان، دانشگاه آزاد اسلامی، تاکستان، ایران
الکلمات المفتاحية: کلروفیل, کارایی مصرف آب, محتوای نسبی آب برگ, برگپاشی, پتانسیل اسمزی برگ,
ملخص المقالة :
بهمنظور بررسی تأثیر محلولپاشی متانول و اسیدآسکوربیک بر رشد و عملکرد بادامزمینی (رقم NC2) در سال زراعی 1394، در دو منطقه آستانه اشرفیه و کیاشهر، آزمایشی بهصورت فاکتوریل در قالب طرح بلوکهای کامل تصادفی در سه تکرار انجام گرفت. تیمارهای مورد بررسی دراین آزمایش شامل محلولپاشی متانول در 4 سطح شامل صفر (شاهد)، 7، 14 و 21 درصد حجمی و محلولپاشی اسیدآسکوربیک در 4 سطح شامل صفر (شاهد)، 250، 500 و 750 میلیگرم در لیتر بودند. محلولپاشی دو بار طی فصل رشد گیاه و با فاصلهی زمانی 15 روزه و شروع محلولپاشی در مرحله کدبندی 72 انجام شد. صفات اندازهگیری شده در این تحقیق شامل: عملکرد غلاف، عملکرد دانه، عملکرد زیست توده، عملکرد پروتئین، عملکرد روغن، کارایی مصرف آب غلاف، کلروفیل، محتوای نسبی آب برگ و پتانسیل اسمزی برگ بود. نتایج نشان داد که اثر ساده محلولپاشی متانول و اسیدآسکوربیک تأثیر مثبت و معنیداری بر روی صفات اندازهگیری شده داشت. بالاترین میزان در پارمترهای اندازهگیری شده در دو تیمار محلولپاشی متانول (14 و 21 درصد حجمی) و دو تیمار اسیدآسکوربیک (500 و 750 میلیگرم در لیتر) مشاهده شد. درصد افزایش میزان عملکرد غلاف در تیمارهای مصرفی 14 و 21 درصد حجمی متانول در مقایسه با تیمار شاهد (عدم کاربرد متانول) بهترتیب 15/20 و 65/24 درصد بود. مصرف اسیدآسکوربیک با مقادیر 500 و 750 میلیگرم در لیتر بهترتیب موجب افزایش 36/17 و 67/20 درصدی عملکرد غلاف نسبت به تیمار شاهد (عدم کاربرد اسیدآسکوربیک) شد.
آذرپور، 1. 1395. اثر محلولپاشی متانول و اسیدآسکوربیک بر رشد و عملکرد بادامزمینی (Arachis hypogaea) در شرایط کشت دیم. رساله دکتری. دانشگاه گیلان. 117 صفحه.
حسینزاده، س.، م. چنیانی و ا. سلیمی. 1393. بررسی اثر متانول بر برخی ویژگیهای فیزیولوژیک نخود تحت تنش خشکی. نشریه پژوهشهای حبوبات ایران. جلد 5، شماره 2: 82-71.
طاهر آبادی، ش.، م پارسا و ا. نظامی. 1391. تأثیر محلولپاشی متانول و مقدار آبیاری بر عملکرد و اجزای عملکرد نخود. مجله آب و خاک. جلد 26، شماره 1: 235-226.
فرجپور، ا.، ج. اصغری، م.ت. صفرزاده و م. زواره. 1389الف. اثر متانول بر روند تغییرات پتانسیل اسمزی آب برگ در گیاه توتون در شرایط کشت دیم. همایش ملی مدیریت کمبود آب و تنش خشکی در زراعت، 5-4 اسفند، ارسنجان.
فرجپور، ا.، ج. اصغری، م.ت. صفرزاده و م. فرضی. 1389ب. اثر محلولپاشی متانول بر روند تغییرات پتانسیل اسمزی و محتوای نسبی آب برگ لوبیا در شرایط کشت دیم. دومین همایش ملی کشاورزی و توسعه پایدار (فرصتها و چالشهای پیش رو)، 12-11 اسفند، شیراز.
قنبری تیلمی، ن.، ح. عباسپور و م. برادران فیروز آبادی. 1393. اثر محلول پاشی آسکوربیکاسید و متانول بر تجمع ماده خشک و عملکرد سویا رقم (DPX) تحت شرایط کم آبی. مجله علمی پژوهشی اکوفیزیولوژی گیاهی، جلد 6، شماره 17: 27-13.
کافی، م.، ا. زند، ب. کامکار، ع. مهدوی دامغانی، ف عباسی و ح.ر. شریفی. 1389. فیزیولوژی گیاهی. ترجمه، انتشارات جهاد دانشگاهی مشهد. 732 صفحه.
Abdul Qados, A. M. S. 2014. Effect of ascorbic acid antioxidant on soybean (Glycine max L.) plants grown under water stress conditions. International Journal of Advanced Research in Biological Sciences. 1(6): 189-205.
Abdulrahman, A.S. 2013. Effect of foliar spray of ascorbic acid, zinc, seaweed extracts and biofertilizer (EM1) on growth of almonds (Prunus amygdalus) seedling. International Journal of Pure and Applied Sciences and Technology 17(12): 62-71.
Arrigoni, O. 2000. The role of ascorbic acid in cell metabolism. Journal of Plant Physiology 157: 481-488.
Babaei, F., H. Heydari shrifabad, M. N. Safarzadeh Vishekaei, G. Normohammadi and I. Majidi Harvan. 2014. Effect of foliar application of methanol and ascorbic acid on physiological characteristics and yield of peanut (Arachis hypogaea L.). Advances in Environmental Biology. 8(16): 280-285.
Bai, Y. R., P. Yang, Y. Yuan Su, Z. Ling He and X. Nan Ti. 2014. Effect of exogenous methanol on glycolate oxidase and photorespiratory intermediates in cotton. Journal of Experimental Botany. 65(18): 5331-5338.
Bakry, A. B., R. E. Abdelraouf, M. A. Ahmed and M.F. El-Karamany. 2012. Effect of drought stress and ascorbic acid foliar application on productivity and irrigation water use efficiency of wheat under newly reclaimed sandy soil. Journal of Applied Sciences Research. 8(8): 4552-4558.
Barakat, M. A. S., A. S. Osman, W. M. Semida and M. A. H. Gyushi. 2015. Influence of potassium humate and ascorbic acid on growth, yield and chemical composition of common bean (Phaseolus vulgaris L.) grown under reclaimed soil conditions. International Journal of Academic Research. 7(1): 192-199.
Da Luz, L. N., R. C. Dos Santos and P. D. A. Melo Filho. 2011. Correlations and path analysis of peanut traits associated with the peg. Crop Breeding and Applied Biotechnology. 11: 88-93.
Dabbagh Rezaeieh, A., H Aminpanah and S. M. Sadeghi. 2014. Effect of methanol foliar application on rice (Oryza sativa L.) growth and grain yield. International Journal of Biosciences. 5(2): 119-125.
Dawood, M. G., S. R. El-Lethy and M. S. Sadak. 2013. Role of methanol and yeast in improving growth, yield, nutritive value and antioxidants of soybean. World Applied Sciences Journal. 26(1): 6-14.
Dinler, B.S., E. Demir and Y.O.N. Kompe. 2014. Regulation of auxin, abscisic acid and salicylic acid levels by ascorbate application under heat stress in sensitive and tolerant maize leaves. Acta Biologica Hungarica. 65(4): 469-480.
Downie, A, S. Miyazaki, H. Bohnert, P. John, J. Coleman, M. Parry and R. Haslam. 2004. Expression profiling of the response of Arabidopsis thaliana to methanol stimulation. Phytochemistry 65: 2305-2316.
Ergin, S., C. Aydogan, N. Oztutk and E. Turhan. 2014. Effects of ascorbic acid application in strawberry plants during heat stress. Turkish Journal of Agricultural and Natural Sciences. 2: 1486-1491.
Farjam, S., H. Kazemi-Arbat, A. Siosemardeh, M. Yarniaand and A. Rokhzadi. 2015. Effects of salicylic and ascorbic acid applications on growth, yield, water use efficiency and some physiological traits of chickpea (Cicer arietinum L.) under reduced irrigation. Legume Research- An International Journal. 38(1): 66-71.
Farouk, S. 2011. Osmotic adjustment in wheat flag leaf in relation to flag leaf area and grain yield per plant. Journal of Stress Physiology and Biochemistry. 7(2): 117-138.
Gheeth, R. H. M., Y. M. M. Moustafa and W. M. Abdel-Hakeem. 2013. Enhancing growth and increasing yield of peas (Pissum sativum L.) by foliar application of ascorbic acid and cobalt chloride. Journal of Novel Applied Sciences. 2(4): 106-115.
Helmy, A. M. 2014. Seed and oil productivity upon foliar spray of soybean (Glycine max L.) With humic and ascorbic acids with or without seed irradiation. Egypt Journal Soil Science. 54: 1-20.
Hosseinzadeh Gashti, A. R., V. Rashidi, M. N. Safarzadeh Vishkaei, M. Esfahani and F. Farahvash. 2015. Effects of foliar application of Methylobacterium and methanol on growth and yield of peanut (Arachise hypogaea L. cv.NC2). Advances in Environmental Biology. 8(21): 1256-1262.
Huve, K., M. Christ, E. Kleist, R. Uerlings, U. Niinemets, A. Walter and J. Wildt. 2007. Simultaneous growth and emission measurements demonstrate an interactive control of methanol release by leaf expansion and stomata. Journal of Experimental Botany. 58: 1783-1793.
Ibrahim, Z.R. 2013. Effect of foliar spray of ascorbic acid, zn, seaweed extracts (sea) Force and biofertilizers (EM-1) on vegetative growth and root growth of olive (Olea Europaea L.) Transplants cv. HojBlanca. International Journal of Pure and Applied Sciences and Technology 17(12): 79-89.
Janardhan, K.V. and V. Krishnamoorthy. 1975. A rapid method for determination of osmotic potential of plant cell sap. Current Science. 44(1): 390-391.
Khaki-Moghadam, A. and A. Rokhzadi. 2015. Growth and yield parameters of safflower (Carthamus tinctorius) as influenced by foliar methanol application under well-watered and water deficit conditions. Environmental and Experimental Biology 13: 93-97.
Khosravi, M.T., A. Mehrafarin, H. Naghdibadi, E. Khosravi. 2013. Reaction of some morpho physiological parameters of purple coneflower (Echinacea purpurea L.) to methanol and ethanol. Planta Medica. 79(5): 1-7.
Kramer, J.K. and J.S. Boyer. 1995. Water relations of plants and soils. Academic Press, California. pp. 495.
Madhusudhana, B. 2013. A Survey on Area, Production and Productivity of Groundnut Crop in India. IOSR Journal of Economics and Finance. 1(3): 1-7.
Narasimhulu, R., P. V. Kenchanagoudar and M. V. C. Gowda. 2012. Study of genetic variability and correlations in selected groundnut genotypes. International Journal of Applied Biology and Pharmaceutical Technology. 3(1): 335-358.
Nonomura, A.M. and A.A. Beson. 1992. The path to carbon in photosynthesis: improved crop yields with methanol. Proceedings of the national academy of sciences of the united states of america the academy 89: 9794-9798.
Osman, E.A.M., M.A. El- Galad, K.A. Khatab and M. A. B. El-Sherif. 2014. Effect of compost rates and foliar application of ascorbic acid on yield and nutritional status of sunflower plants irrigated with saline water. Global Journal of Scientific Researches 2(6): 193-200.
Padmavathi, T.A.V. and D. Manohar Rao. 2013. Differential accumulation of osmolytes in 4 Cultivars of peanut (Arachis hypogaea L.) under drought stress. Journal of Crop Science and Biotechnology. 16(2): 151-159.
Pastori, G. M., G. Kiddle, J. Antoniw, S. Bernard, S. Veljovic-Jovanovic, P.J. Verrier and G. Noctor, C.H. Foyer. 2003. Leaf vitamin c contents modulate plant defense transcripts and regulate genes that control development through hormone signaling. Plant Cell. 15: 939-951.
Ramberg, H. A., J. S. C. Bradley, I. S. C. Olson, J. N. Nishio, J. Markwell and J. C. Osterman. 2002. The role of methanol in promoting plant growth: an update. Journal of Plant Biochemistry and Biotechnology. 1: 113-126.
Ranganayakulu, G., C. Sudhakar and S. Reddy. 2015. Effect of water stress on proline metabolism and leaf relative water content in two high yielding genotypes of groundnut (Arachis hypogaea L.) with contrasting drought tolerance. Journal of Experimental Biology and Agricultural Sciences. 3(1): 97-103.
Reddy, T.Y., V.R. Reddy and V. Anbumozhi. 2003. Physiological responses of peanut (Arachis hypogaea L.) to drought stress and its amelioration: a critical review. Plant Growth Regulation 41: 75-88.
Rontein, D., G. Basset and A.D. Hanson. 2002. Metabolic engineering of osmoprotectant accumulation in plants. Metabolic Engineering 4: 49-56.
Samdur, M.Y., A.L. Singh, R.K. Mathur, P. Manivel, B M. Chikani, H.K. Gor and M.A. Khan. 2000. Field evaluation of chlorophyll meter for screening groundnut (Arachis hypogaea L.) genotypes tolerant to iron-deficiency chlorosis. Current Science 79: 211-214.
Smirnoff N. 2011. Vitamin c: the metabolism and functions of ascorbic acid in plants. Advances in Botanical Research. 59: 107-177.
Soghani, M., M. Yarnia, F. Paknejad, F. Farahvash and S. Vazan. 2014. Effects of methanol on the yield and growth of soybean in different irrigation conditions. International Journal of Biosciences. 4(8): 160-168.
Songsri, P., S. Jogloy, N. Vorasoot, C. Akkasaeng, A. Patanothai and C.C. Holbrook. 2008. Root distribution of drought-resistant peanut genotypes in response to drought. Journal of Agronomy and Crop Science. 194: 92-103.
Tsigbey, K.K., G.J. Parsana and C.J. Dangaria. 2004. Quality status of groundnut seed at farmer’s level in Gujarat. Seed Research. 35(1): 111-113.
Turner, N. C. 1987. Crop water deficits: a decade of progress. Advances in Agronomy 39: 1-51.
Zbiec, I., S. Karczmarczyk and C. Podsi-adło. 2003. Response of some cultivated plants to methanol as compared to supple-mental irrigation. Electronic Journal of Polish Agricultural Universities. 6(1): 1-7.
Zhang Y. 2013. Ascorbic acid in plants (biosynthesis, regulation and enhancement). Springer Briefs in Plant Science. 123 pp.
Zhang, S. B., Q. U. Lu, H. Yang, Y. Li and S. Wang. 2011. Aqueous enzymatic extraction of oil and protein hydrolysates from roasted peanut seeds. Journal of the American Oil Chemists Society. 88: 727-732.
_||_