Some applications of basic operations in Clifford algebra
الموضوعات :T. Manzoor 1 , A. Akg\"{u}l 2
1 - Department of Mathematics, Maulana Azad National Urdu University, Hyderabad-500032, India
2 - Department of Mathematics, Art and Science Faculty, Siirt University, Siirt-56100, Turkey
الکلمات المفتاحية: Contraction, Bivector, CA (GA), dualization, multivector, $g$-numbers, versor,
ملخص المقالة :
Geometric algebra provides intuitive and easy description of geometric entities (encoded by blades) along with different operations and orthogonal transformations. Grassmann's Exterior and Hamilton's quaternions lead to the existence of Clifford (Geometric) algebra. Clifford or geometric product has its significant role in whole domain of Clifford algebra, while as contraction (anti outer product or analogous to dot product) is grade reduction operation. The other operations can be derived from the former one. The paper explores elucidation of Clifford algebra and Clifford product with some salient features and applications.
[1] R. Ablamowicz, B. Fauser, On the transposition anti involution in real Clifford algebras I: The transposition map, Linear and Multilinear Algebra. 59 (12) (2011), 1331-1358.
[2] R. Alves, D. Hildenbrand, C. Steinmetz, P. Uftring, Efficient development of competitive mathematica solutions based on geometric algebra with gaalopweb, Advances in Applied Clifford Algebras. 30 (4) (2020), 1-18.
[3] E. Artin, Geometric Algebra, Interscience Publ. Inc, London, 1957.
[4] W. L Bade, H. Jehle, An introduction to spinors, Reviews of Modern Physics. 25 (1953), 3:714.
[5] E. Bayro-Corrochano, A. M. Garza-Burgos, J. L Del-Valle-Padilla, Geometric intuitive techniques for human machine interaction in medical robotics, Inter. J. Social Robotics. 12 (1) (2020), 91-112.
[6] J. B. Literatura, Z historie linearni algebry, Matfyzpress (Praha), 2007.
[7] S. Breuils, V. Nozick, L. Fuchs, Garamon: a geometric algebra library generator, Advances in Applied Clifford Algebras. 29 (4) (2019), 1-41.
[8] C. C. Chevalley, The Algebraic Theory of Spinors, The Algebraic Theory of Spinors, Columbia University
Press, 1954.
[9] J. S. R. Chisholm, A. K. Common, Clifford Algebras and Their Applications in Mathematical Physics, Springer Science & Business Media, 2012.
[10] W. K. Clifford, Applications of grassmann’s extensive algebra, American Journal of Mathematics. 1 (4) (1878), 350-358.
[11] W. K. Clifford, William Kingdon Clifford, https://www.britannica.com/biography/Plato.
[12] E. B. Corrochano, G. Sobczyk, Geometric Algebra with Applications in Science and Engineering, Springer Science & Business Media, 2001.
[13] L. Dorst, D. Fontijne, S. Mann, Geometric Algebra for Computer Science: An Object-Oriented Approach to Geometry, Elsevier, 2010.
[14] C. Doran, A. Lasenby, Geometric algebra for physicists, Cambridge, 2007.
[15] R. D'Auria, S. Ferrara, M. Lledo, V. Varadarajan, Spinor algebras, J. Geomet. Phys. 40 (2) (2001), 101-128.
[16] M. Eastwood, Notes on Conformal Differential Geometry, Proceedings of the 15th Winter School Geometry and Physics, 1996.
[17] G. Floystad, The exterior algebra and central notions in mathematics, Notices of the AMS. 62 (4) (2015), 364-371.
[18] J. W. Gibbs, Thermodynamics, Longmans, Green and Company, 1906.
[19] H. Hadfield, S. Achawal, J. Lasenby, A. Lasenby, B. Young, Exploring novel surface representations via an experimental ray-tracer in cga, Advances in Applied Clifford Algebras. 31 (2) (2021), 1-33.
[20] D. Hestenes, New Foundations for Classical Mechanics, Springer Science & Business Media, 2012.
[21] D. Hestenes, G. Sobczyk, Clifford Algebra to Geometric Aalculus: A Unified Language for Mathematics and Physics, Springer Science & Business Media, 2012.
[22] A. Jelinek, A. Ligocki, L. Zalud, Robotic template library, arXiv:2107.00324, 2021.
[23] S. D. Keninck, Non-parametric Real time Rendering of Subspace Objects in Arbitrary Geometric Algebras, Computer Graphics International Conference, Springer, 2019.
[24] J. Lasenby, A. N Lasenby, C. Doran, A unified mathematical language for physics and engineering in the 21st century, Philosophical Transactions of the Royal Society of London. Series A. 358 (1765) (2000), 21-39.
[25] D. C. Lay, Linear Algebra and Its Applications, Pearson Education India, 2003.
[26] S. Lipschutz, M. Lipson, Schaum’s Outline of Theory and Problems of Linear Algebra, Schaum’s outline, 2001.
[27] A. Macdonald, Linear and Geometric Algebra, Alan Macdonald, 2010.
[28] W. Massey, Cross products of vectors in higher dimensional euclidean spaces, American Mathematical Monthly. 90 (10) (1983), 697-701.
[29] E. Meinrenken, Clifford algebras and the duflo isomorphism, arXiv preprint math/0304328, 2003.
[30] F. G. Montoya, R. Ba ´ nos, A. Alcayde, F. M. Arrabal-Campos, Geometric algebra for teaching ac circuit theory, Inter. J. Circuit Theory. Appl. 49 (11) (2021), 3473-3487.
[31] A. Mutlu, The essentials of clifford algebras with maple programming, Sakarya Uni. J. Sci. 25 (2) (2021), 610-619.
[32] S. R. Ramirez, J. A. J. Gonzalez, G. Sobczyk. From vectors to geometric algebra. arXiv e-prints, pages arXiv1802, 2018.
[33] M. C. Roldan, F. I. Martin Moren, A powerful tool for optimal control of energy systems in sustainable buildings: Distortion power ivector, Energies, 14 (2021), 8:2177.
[34] G. Schubring, H. grassmann, Extension Theory, American Mathematical Society, 2003.
[35] D Sen, D. Sen, Representation of physical quantities: From Scalars, Vectors, Tensors and Spinors to Multivectors, 2016, 10.13140/RG.2.2.25564.85128.
[36] G. Sobczyk. Geometric matrix algebra, Linear Algebra and its Applications. 429 (5-6) (2008), 1163-1173.
[37] G. Sobczyk. Geometrization of the real number system, http://www.garretstar.com, 2017.
[38] G. Sobczyk, Hyperbolic numbers revisited, http://www.garretstar.com/hyprevisited12-17-2017.pdf.
[39] G. Sobczyk, The hyperbolic number plane, The College Mathematics Journal. 26 (4) (1995), 268-280.
[40] G. Sommer, Geometric computing with Clifford algebras, Springer, 2001.
[41] P. G. Tait, An Elementary Treatise on Quaternions, University Press, 1890.
[42] S. Thiruvengadam, K. Miller, A geometric algebra based higher dimensional approximation method for statics and kinematics of robotic manipulators, Advances in Applied Clifford Algebras. 30 (1) (2020), 1-43.
[43] I. Todorov, Clifford algebras and spinors, arXiv:1106.3197, 2011.
[44] J. A. Vince, Geometric Algebra: An Algebraic System for Computer Games and Animation, Springer, 2009.
[45] S. Winitzki, Linear Algebra via Exterior Products, Lulu Press, 2009.
[46] J. Wu, M. Lopez, M. Liu, Y. Zhu, Linear geometric algebra rotor estimator for efficient mesh deformation, IET Cyber-systems and Robotics. 2 (2) (2020), 88-95.