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Abstract. Geometric algebra provides intuitive and easy description of geometric entities
(encoded by blades) along with different operations and orthogonal transformations. Grass-
mann’s Exterior and Hamilton’s quaternions lead to the existence of Clifford (Geometric)
algebra. Clifford or geometric product has its significant role in whole domain of Clifford
algebra, while as contraction (anti outer product or analogous to dot product) is grade re-
duction operation. The other operations can be derived from the former one. The paper
explores elucidation of Clifford algebra and Clifford product with some salient features and
applications.
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1. Introduction and preliminaries

William Kingdon Clifford, a British mathematician cum philosopher born in 1845
and expired in 1879. The essay “The Ethics in Belief” opens new vistas in Clifford’s
mathematical philosophy. Umpteen articles have delineated the biography of this great
mathematician [9, 11]. Mathematicians have enunciated distinguished branches of math-
ematics and their relationships with other fields of knowledge accordingly. The present
world is familiar with algebra and its different types, such as algebra of real number sys-
tem, complex numbers, hyperbolic numbers, quaternions, dual quaternions, and Dirac
algebra. Some of them are either sub algebras or embeddings of Clifford algebras. Grass-
mann’s ground breaking publication ‘Ausdenungslehre’ (2000). English version [34] is
fully loaded with the concepts of exterior algebra. The translated version of the book
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is more mathematical as compared to its original edition and diverted the attention of
whole mathematical community towards him. Clifford algebras are directed number sys-
tems or extensions of complex numbers C and quaternions H, while keeping preserved
the anti commutation rule (ij = −ji), i, j are unit quaternions, adjoining of additional
square roots of −1 is made possible through these algebras. Hestenes’ Introduction of Ge-
ometric Algebra for Physicists [11] illustrates the copious evidences about the evolution
of this subject. Clifford’s prime motive was to amalgamate Grassmann’s and Hamilton’s
works in order to unfold novel dimensions in algebra. This is unique from other areas of
mathematics most probably, because of its containment of mixed grade elements. New
associative geometric product (coalesce of inner and outer products) paved a track to
Clifford to discover this algebra. His idea was to generalize this product to arbitrary
dimension by replacing outer product’s imaginary term. Hestenes [20] highlighted the
mathematical framework for physics especially in description of Clifford language for
Pauli and Dirac equations, and along with other collaborators [24, 35]. They carried out
the job of Clifford to new peaks from the stage where he left to serve. Vector algebra
without geometrical representation of scalars and vectors is a sort of “hermaphrodite
monster” [41]. So far this algebra dealt with algebra of oriented subspaces through the
origin. Such spaces can be reflected, rotated, projected and, even intersected with inser-
tion of generic manipulations and equations. Other kinds of algebras or models of Clifford
algebra are homogeneous models that usually isolated the emergence of algebra from ori-
gin of represented subspace, and is effective in blade notation of points, lines and planes.
Updated version of this model is conformal model [16] which preserves angle. Invertible
multivectors are helpful in representation of all conformal transformations. The applica-
tions of these algebras are vast running from engineering to geometric algebra software.
Engineering branch includes electrical engineering and optical fibers [30, 33], robotics and
control [5, 42], computer graphics and modelling [19, 23, 46], software libraries [7, 22]
and computer algebra systems [2, 31].

This paper is composed of six sections and subsections including introduction and
conclusion. Section 2 contains description of geometric algebra with some important
definitions, section 3 is about geometric product, section 4 comprising g- numbers, and
section 5 is application part.

2. Geometric algebra

Geometric algebra term was proposed by pre-eminent mathematician Artin [3] of 20th
century, while discussing algebras of symplectic and orthogonal groups. The subject
is also known by Clifford algebra or Clifford’s geometric algebra, Grassmann algebra
is its backbone. Some basic definitions are necessary to explore geometric algebra and
derivation of results. Elements in geometric algebra are scalars, vectors, bivectors, trivec-
tors, quadvectors ..., where bivectors are pseudoscalars, vectors are pseudovectors in Cl2,
trivectors are pseudoscalars in Cl3 and bivectors are its pseudovectors. It can be men-
tioned here that pseudovectors and pseudoscalars are grade (n−1) and grade (n) elements
in a Clifford algebra. Apart from defining geometric product, we have other unary oper-
ations and properties without which various computations and manipulations of results
will be cumbersome.

Definition 2.1 A mapping B : V× V −→ F is bilinear form if

• B(ax1 + bx2, y) = aB(x1, y) + bB(x2, y),
• B(x, ay1 + by2) = aB(x, y1) + bB(x, y2).
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V is a finite dimensional vector space over field F, a, b ∈ F and xi, yi ∈ V.

Definition 2.2 q : V −→ F is quadratic form if q(x) = B(x, x) for some symmetric
bilinear form. Equivalently, for a given finite dimensional vector space V over field F,

Q : V −→ F =⇒ Q(λv) = λQ(v) ∀λ ∈ F, v ∈ V.

It implies that a quadratic form is homogeneous polynomial of degree 2 in a number of
variables. Both quadratic and bilinear forms have matrix representation [26]. It became
important in comparison of lengths of non parallel line segments.

Definition 2.3 [17] The quotient algebra T (V)
/
{R} is exterior algebra, where V is

vector space of dimension n, K is field and

T (V) =
⊕

m⩾0V⊗m or
T (V) = (u1 ⊗ u2 ⊗ ...⊗ up) · (v1 ⊗ v2 ⊗ ...⊗ vq) = u1 ⊗ u2 ⊗ ...⊗ up ⊗ v1 ⊗ v2 ⊗ ...⊗ vq

is tensor algebra, {R} is two sided ideal in T (V) generated by the relations R and this
R is actually a vector subspace of V⊗k V.
The product in T (V)

/
{R} is ∧ and equivalent to ⊗. As for basis vectors

e1 ∧ e2 ∧ ... ∧ en, ei ∧ ei = 0 =⇒ ei ⊗ ei

is relation in R. The associative, linear and anti commutative properties

• x ∧ (y ∧ z) = (x ∧ y) ∧ z,
• α(x ∧ y) + β(x ∧ z) = x ∧ (αy + βz),

• ei ∧ ei = 0 and ei ∧ ej = −ej ∧ ei,

provides algebraic structure to exterior algebra E(n). Dimension of E(n) = 2n.

Definition 2.4 Clifford algebra: ClFp,q of n-dimensional vector space E over some field
F with signature p+ q = n and basis {e0, e1, ..., ep, ep+1, ep+2, ..., eq} endowed with Clif-
ford/geometric multiplication AB on E such that for all A,B ∈ E ⇒ AB ∈ E according
to the following (for all A,B,C ∈ E):

• ∀α, β ∈ F,

(αA+ βB)C = αAC + βBC and A(αB + βC) = αAB + βAC;

• The associativity is (AB)C = A(BC);

• Unitality is Ae = A = eA;

• eiej + ejei = 2ϵije.

(or)

Cl(Vn,q) is geometric algebra of n-dimensional vector space Vn over some field K gener-
ated by all x ∈ Vn with quadratic form q : Vn → K and x2 = q(x), dim {Cl(Vn,q)} = 2n.
Cl(Vn,q) reduces to exterior algebra {∧(Vn)} for q = 0.

Definition 2.5 Clifford map:A linear mapping ψ defined between a linear space V with
quadratic map Q and an associative algebra M over some field F.

=⇒ ψ(x)2 = Q(x) · 1A ∀x ∈ V.

Thus in Clifford map sense, Clifford algebra Cl(Q) is quadratic algebra along with Clifford
map ψ : V −→ Cl(Q) =⇒ x −→ αx.
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∋ for any Clifford map ϕ : Cl(Q) −→ M, there exists a unique algebra homomorphism
ψ : Cl(Q) −→ M and ϕx = ψ(αx). All maps here can be deduced from α : V −→ Cl(Q)
which is universal.

Definition 2.6 Simplest Euclidean geometric algebra and unified geometric algebra for
plane:Generalized geometric algebra notation

Gp,q ≡ Clp,q ≡ R{a1, a2, ..., ap, b1, b2, ..., bq}

as an associative algebra with a2i = {1; 1 ⩽ i ⩽ p} and b2j = {−1; 1 ⩽ j ⩽ q} of
dimension (

n
0

)
+

(
n
1

)
+ ...+

(
n
n

)
= 2n.

Note that

G1 ≡ Cl1 ≡ {g; g = x+ ye : x, y ∈ R} ≡ R(e)

with e2 = 1 is considered as the simplest Euclidean GA and defines a hyperbolic plane.

G1,1 ≡ {g; g = g0 + g1e1 + g2e2 + g12e12 : gi ∈ R} ≡ R(e1, e2), G1,1
∼=M2(R)

In matrix notation of standard basis [37]

G1,1 ≡ spanR(1, e1, e2, e1e2) ≡
[
1 e1

]T [
1 e2

]
=

(
1 e2
e1 e1e2

)
.

Any element g ∈ G1,1 ≡
(
1 e1

)(g0 g2
g1 g12

)[
1 e2

]T
.

G2 = G0
2 + G1

2 + G2
2 = G+

2 + G−
2 is unified GA system for plane, or G2 = G+

2 ⊕ G−
2 =

R ⊕ R2 ⊕ ∧2R2 with even constituent G+
2 ≡ G+2

2,0 = {x | x = x + ye12 ∋ x, y ∈ R} ∼= C
and odd constituent G−

⊭ ≡ G1
2 = {x | x = xe1 + ye2} ≡ R2.

Other geometric algebras in higher dimensions are

G3 ≡ Cl3,0 ≡ spanR{1, e1, e2, e3, e12, e23, e13, e123} ≡ R(e1, e2, e3)

with scalars, vectors, bivectors and trivectors as its elements. Its odd and even con-
stituents are Cl−3,0 = R3 ⊕ ∧3R3 and Cl+3,0 = R⊕ ∧2R3.

Remark 1 Subalgebra generated by F = F ·1M and vector space V . Gp,q is graded linear
space and universal, because no relations between new square roots are assumed [36, 40].
For any r-vector of GA, Ar = {a1 ∧ a2 ∧ a3 ∧ ... ∧ ar} ⇒ A∗

r = (−1)rAr, so inversion is
generalization of complex conjugation.

Moreover, G+
3

∼= H is also known by spinor algebra [4, 8, 15] in order to emphasize
the geometric significance of its elements. The decomposition of complex numbers into
their real and imaginary parts paves a way for decomposition of CA into even and odd
constituents, which in turn lead to an involution operation of CA. The main involution
is inversion mapping that distinguishes even and odd constituents in Clifford algebra.
G∗

p,q = {G+
p,q +G−

p,q}∗ = G+
p,q −G−

p,q is inversion of Gp,q = G+
p,q +G−

p,q.
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2.1 Blade, multivector, versor and their grade

(1). Geometric product of various elements in an algebra gives rise to blades of varying
grades. From the canonical/Clifford basis {1, e1, e2, e12} of Cl2, scalar is zero grade
blade, vectors are of grade 1 and bivector is grade 2 blade. Blades can be both
simple (some authors like Baylis prefer to call k-vectors that square to a real
number) as well as compound. Simple ones are those which can be reduced to
the outer product of basis vectors upto the real factor in some basis and vice
versa case is in compound ones. Grade of blades made order to scalars, vectors,
bivectors, ... tangible to some degree. Scalars are of grade 0, vectors of grade 1,
planar elements of grade 2, space elements of grades 3, 4, ....

For instance e12 ∈ G3 is simple, and {e1e2 + e2e3} = e2{e1 + e3} is compound.
Grade of a basis blade ek ∈ Gp,q = |k| or gr(ek) = |k| in Gp,q gr+(ek) = 1{a ∈
k; 1 ⩽ a ⩽ p} and gr−(ek) = −1{a ∈ k; p < a ⩽ p+ q} as defined in [43].

(2). Multivector or geometric (hypercomplex) number is linear combination of basis
elements of GA. Standard notation for a generic/general multivector of Gp,q is

αiEi =
2n∑
i=1

αiEi for αi ∈ R, Ei = Gp,q[i]. A multivector in Cl3 is of the form

M = a0 + a1e1 + a2e2 + a3e3 + a12e12 + a13e13 + a23e23 + a123e123
=⇒M =M0 +M1 +M2 +M3,

where 0, 1, 2, 3 represent grade of different elements. Due to antisymmetric prop-
erty of outer product, arbitrary multivector in case of orthonormal basis reduces
to the linear combination of basis elements. Generic multivector is a structure
comprising of linear combination of elements with different grades and simple
multivector can be of any grade (0, 1, 2, ..., n) depends on the dimension of space.

(3). Versors are invertible multivectors and are factorizable in geometric product.
Invertibility of a multivector means that the quadratic form of each of its compo-
nents is non zero. i.e, Q

[
ai, ai

]
̸= 0. Versors are even (factors are even) and odd

(with odd factors).

A = a1a2a3, ..., an is n versor.

2.2 Reversion, inversion, grade involution and conjugation

(1). Reversing the order of factors in a blade is reversion like b = a ∧ b ∧ c ⇒ B∼ =
−c∧ b∧ a. Reversion (anti involution) effects the orientation of a blade as per its

sign change and for a k- blade, it is denoted by B∼
k = (−1)

(
k!

2(k−2)!

)
.

(2). Positive scalar magnitue of a blade Ak is |Ak| =
√

|A2
k| =

√
|A∼

k Ak| and A∼
k Ak =

Ak ∗A∼
k . Then inversion for Ak is

A−1
K = |Ak|2A∼

k =⇒ A−1
K Ak = A∼

k A
−1
K .

Let A3 = a1 ∧ a2 ∧ a3 is a 3 blade, A∼
3 = −a3 ∧ a2 ∧ a1, then

|A3| =
√

|(a1 ∧ a2 ∧ a3) ∗ (−a3 ∧ a2 ∧ a1)|,

A−1
3 = |a1 ∧ a2 ∧ a3|2(−a3 ∧ a2 ∧ a1),
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where (a1 ∧ a2 ∧ a3) ∗ (−a3 ∧ a2 ∧ a1) can be evaluated using determinant.
(3). If A2 = m0+m1e1+m2e2+m12e12 is a multivector in Cl2, then its grade involution

A∧
3 = m0−m1e1−m2e2+m12e12 grade involution clamps the orientation of odd

grade blades as here in vectors. A∧
r = (−1)

r2

r for any r blade.
(4). Conjugate of a blade A4 = a1 ∧ a2 ∧ a3 ∧ a4 is A∗

4 = a4 ∧ a3 ∧ a2 ∧ a1 and

A∗
4 = (−1)2(5)A4 = A4. In general, A∗

k = (−1)
k(k+1)

2 Ak

Thus original blade is obtained on applying anti involution, involution and conjugation
operations successively two times.

3. Geometric product

William Kingdon Clifford’s [10] algebraic framework that he founded from integration
of inner product to Grassmann’s outer/exterior product, generalization of Grassmann’s
algebra [6] and Hamilton’s quaternions is behind the evolution of geometric algebra.
Geometric product unites inner and outer products as scalar and vector products are
united by quaternion product. In formal sense, geometric product for vectors a, b ∈ R4

with orthonormal basis {1, e1, e2, e3, e4}, where a = a1e1 + a2e2 + a3e3 + a4e4 and b =
b1e1 + b2e2 + b3e3 + b4e4, is

ab =

4∑
i=1

(aibi) + (a1b2 − a2b1)e12 + (a1b3 − a3b1)e13 + (a1b4 − a4b1)e14

+ (a2b3 − a3b2)e23 + (a2b4 − a4b2)e24 + (a3b4 − a4b3)e34,

ab = a · b+ a ∧ b.

ba = a · b− b ∧ a as a ∧ b = −b ∧ a.
Symmetric part of ab is a · b = 1

2(ab + ba), anti symmetric one is a ∧ b = 1
2(ab − ba),

anti-commuatator product is 1
2(ab+ba) = {a, b} and commutator product is 1

2(ab−ba) =
{a, b}. Also, a∧Ak is (k+1) vector, α∧Ak is Ak vector multiplied by scalar α, a ·Ak =
1
2{aAk+(−1)k−1Aka} is grade lowering inner product and a∧Ak = 1

2{aAk−(−1)k+1Aka}
is grade raising outer product.

It is not flexible to decompose two higher grade multivectors into symmetric and
anti symmetric constituents. Geometric product ab is dyad if written in simple product
operation (exclusion of exterior product), the branch of mathematics concerned to dyads
is dyadics [44].

Inner and outer product names are supposed to be proposed first by Grassmann, while
as scalar and outer product by Hamilton. The only crucial difference between the two is
that Grassmann’s outer product is used in computation of areas for basis bivectors and
vector product in creation of axial vector perpendicular to original vectors.

3.1 Scalar (inner) product

This operation is known by inner, dot or scalar product reliable on nature of context.
Inner product of vectors is common in linear algebra, but here it is defined for blades. If
a = a1e1+a2e2+a3e3 and b = b1e1+b2e2+b3e3 are two vectors in R3 then a·b =

∑3
i=1 aibi

in coordinate sense and its corresponding geometrical notation is a · b = ∥a∥∥b∥cosθ with
0 ⩽ θ ⩽ π between a and b. The key role of inner product in formation of Euclidean
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plane R2 is determined by its bilinear {(a · b)α = a · (αb) and a · b + a · c = a · (b + c)},
symmetric (a · b = b · a) and positive definite (a ̸= 0,⇒ a · a. > 0) features. Its linear
feature enables to compare parallel line segments and orthogonality for standard basis
vectors x1 = (1, 0, 0), x2 = (0, 1, 0), x3 = (0, 0, 1) forms orthonormal basis [25] for R3.

This operation can be denoted by a mapping ·Rn×Rn −→ R which is bilinear (linear
and symmetric). Like exterior product, it has its own domain of applications such as
in computation of norm and cosine of angle, and cosine of angle is possible between
blades of same grade. In [13] inner product of vectors is special case of scalar product
∗ : ∧kRn × ∧kRn −→ R.

Example 3.1 For blades X = e1 ∧ e2 ∧ e3 ∧ e4 ∧ e5 and Y = m1 ∧m2 ∧m3 ∧m4 ∧m5,

X ∗ Y = det


e1 ·m5 e1 ·m4 e1 ·m3 e1 ∧m2 e1 ∧m1

e2 ·m5 e2 ·m4 e2 ·m3 e2 ∧m2 e2 ∧m1

e3 ·m5 e3 ·m4 e3 ·m3 e3 ∧m2 e3 ∧m1

e4 ·m5 e4 ·m4 e4 ·m3 e4 ∧m2 e4 ∧m1

e5 ·m5 e5 ·m4 e5 ·m3 e5 ∧m2 e5 ∧m1


Reversion in blade Y is taken in order to overcome negation in norm and angle, X ∗Y

vanishes for blades of unequal grade. In orthonormal basis blades, atleast two rotations
are needed to align disjoint sub blades of grade 2, because geometrically single scalar
angle can’t be defined. Inner product of multivectors a.M = a · (b∧ c) = (a · b)c− (a · c)b
is a vector not a scalar. The extra step in computation of angle between two blades is
to find a common factor whose norm must be = 1 and this becomes a component along
with a vector. i.e, X = x1 ∧ x2 = x ∧ b; x · b = 0 and Y = y1 ∧ y2 = y ∧ b; y · b = 0,

X ∧ Y = (x ∧ b) ∗ (b ∧ y) and ∥X∥ = ∥x∥ =⇒ X ∗ Y = ∥X∥∥Y ∥cosθ.

If a ·Ak = 1
2{aAk − (−1)kAka} = (−1)k+1Ak · a, a ·Ak is a (k-1) vector.

3.2 Exterior (outer) product

Cross product a × b is familiar, considered as axial vector in Gibb’s vector algebra
[18], and replaced outer product after publication of Grassmann’s algebra of extension.
Such an operation has its own applications like in description of angular velocity, force
acting on charge in magnetic field and torque about origin of force. Yet, it is used in
3 dimensional and 7 dimensional cases and, analogously in higher dimensions [28]. The
point of interest is exterior product and relation between these two products. In two
dimensions, exterior product [45] of two vectors a and b is a ∧ b has both magnitude
as well as orientation, and is completely defined by anti symmetry and bilinearity. It
is called by bivetor, directed number from Grassman’s inception and shape of plane is
immaterial in its representation. Exterior product vanishes for two parallel or norm zero
vectors, as no bivector is formed or this operation between an element of grade n and
another element of grade n+ 1 reduces to zero in n dimensional space.

Example 3.2 Let x = 3e1 + 2e2 and y = −3e1 + e2 be two elements in Cl2. Then
x ∧ y = (3e1 + 2e2) ∧ (−3e1 + e2) = 3e1 ∧ e2 + 6e1 ∧ e2 = 9e1 ∧ e2 = 9e1e2 and
y ∧ x = −9e1 ∧ e2 = −9e1e2, or

x ∧ y = det

(
3 2
−3 1

)
e1 ∧ e2 and y ∧ x = det

(
−3 1
3 2

)
e1 ∧ e2,
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where e1, e2 are orthonormal vectors and e1∧e2 is unit bivector. Analogous of bivectors in
3 and 4 dimensions are trivectors and quad vectors. Components of bivectors are areas of
parallelogram in coordinate planes, whereas trivector components are volume projections
of a parallelopiped onto coordinate spaces.

Definition 3.3 Linear Bivector and Trivector SpacesBivector space consists bivectors
as elements and trivector space has trivectors. A map ∧ : Rn × Rn → ∧2Rn determines
linear bivector space with elements of the form A = x ∧ y, y = B = y ∧ z, additive
identity is e∧e = 0. It has scaling a∧ (ρb) = ρ(a∧b), ρ ∈ R and distributive a∧ (b+c) =
(a∧ b) + (a∧ c) properties, where a∧ b, a∧ c ∈ ∧2Rn. A map ∧ : Rn ×Rn ×Rn → ∧3Rn

defines linear trivector space with scaling a ∧ (ρb ∧ c) = ρ(a ∧ b ∧ c) and distributive
a ∧ (b ∧ c+ d ∧ f) = a ∧ b ∧ c+ a ∧ d ∧ f for all a ∧ b ∧ c, a ∧ d ∧ f ∈ ∧3Rn properties.

a ∧ b ∧ c = 1

3!
{(abc− cba) + (bca− acb) + (cab− bac)} =

1

6
det[a b c],

as abc consists 6 permutations [44] because of inversions. Factor 1/6 appears, because
a ∧ b ∧ c has six combinations abc, cba, bca, acb, cab, bac, and can be summed as (abc −
cba) + (bca − acb) + (cab − bac). x ∧M = (−1)lM ∧ x is general rule for symmetry of
exterior product with multivector M and l is dimension dependent. Cross product has
its significant role in Lie algebras as R3 with Jacobi identity x× (y × z) + y × (z × x) +
z × (x× y) = 0 is one instance.

3.3 Decomposition of blades in terms of exterior product

Subordinate product (outer product) of geometric product paves a smooth way in
elimination of coefficients of basis vectors of an arbitrary vector in R2. In fact, this leads
to a concept that lengths are length ratios along same line, areas are ratios of areas in
same plane through origin. In the similar manner, volumes are ratios of volumes and
their analogous (hyper volumes) in higher dimensional cases are so.

A vector W = {α1k1 + α2k2 + ...+ αnkn} ∈ Rn with basis (k1, k2, k3, ..., kn), where

α1 =
W ∧ k2 ∧ ... ∧ kn
k1 ∧ ... ∧ kn

, α2 =
k1 ∧W ∧ k3 ∧ ... ∧ kn

k1 ∧ ... ∧ kn
, ... , αn =

k1 ∧ k2 ∧ ... ∧ kn−1 ∧W
k1 ∧ ... ∧ kn

.

Then

W =
(W ∧ k2 ∧ ... ∧ kn
k1 ∧ k2 ∧ ... ∧ kn

)
(k1) + ... +

(k1 ∧ k2 ∧ ... ∧ kn−1 ∧W
k1 ∧ k2 ∧ ... ∧ kn−1 ∧ kn

)
(kn)

(1). n = 3, W ∈ R3 with basis (k1, k2, k3);

W =
(W ∧ k2 ∧ k3
k1 ∧ k2 ∧ k3

)
(k1) +

(k1 ∧W ∧ k3
k1 ∧ k2 ∧ k3

)
(k2) +

(k1 ∧ k2 ∧W
k1 ∧ k2 ∧ k3

)
(k3),

(2). n = 4, W ∈ R4 with basis (k1, k2, k3, k4);

W =

{(
W ∧ k2 ∧ k3 ∧ k4
k1 ∧ ... ∧ k4

)
(k1) +

(
k1 ∧W ∧ k3 ∧ k4
k1 ∧ ... ∧ k4

)
(k2) + ...,
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(3). n = 5, W ∈ R5 with basis (k1, k2, k3, k4, k5);

W =

{(W ∧ k2 ∧ k3 ∧ k4 ∧ k5
k1 ∧ ... ∧ k5

)
(k1) +

(k1 ∧W ∧ k3 ∧ k4 ∧ k5
k1 ∧ ... ∧ k5

)
(k2)

+
(k1 ∧ k2 ∧W ∧ k4 ∧ k5

k1 ∧ ... ∧ k5

)
(k3) + ...

}
.

Example 3.4 For a vector B = αa+ βb+ γc ∈ R3 α, β and γ are to be eliminated.

α =
B ∧ b ∧ c
a ∧ b ∧ c

, β =
a ∧B ∧ c
a ∧ b ∧ c

, γ =
a ∧ b ∧B
a ∧ b ∧ c

.

Let

B =
[
1 2 3

]T
, a =

[
2 −1 0

]T
, b =

[
−1 0 2

]T
, c =

[
0 −3 2

]T
.

Then

α =
B ∧ b ∧ c
a ∧ b ∧ c

= 1.9, β =
a ∧B ∧ c
a ∧ b ∧ c

= 2.8, γ =
a ∧ b ∧B
a ∧ b ∧ c

= −1.3

(or)

α =

(
B ∧ b ∧ c
a ∧ b ∧ c

)
= det

[B b c]

[a b c]
, β =

(
a ∧B ∧ c
a ∧ b ∧ c

)
= det

[a B c]

[a b c]
, γ =

(
a ∧ b ∧B
a ∧ b ∧ c

)
= det

[a b B]

[a b c]

and B = (1.9)a+ (2.8)b− (1.3)c.
The outer product of column vectors is taken in terms of basis vectors (e1, e2, e3).

Example 3.5 A vector S = αa+βb+γc+δd+ρe ∈ R5, coefficients of variables a, b, c, d, e
can be eliminated by taking ratio of their wedge product with the original vector.

α =
S ∧ b ∧ ... ∧ e
a ∧ ... ∧ e

, ... ρ =
a ∧ ... ∧ d ∧ S
a ∧ ... ∧ e

.

Let

S =
[
1 0 2 −1 9

]T
, a =

[
−2 3 0 1 −4

]T
, b =

[
3 −2 4 −5 0

]T
,

c =
[
−4 2 0 3 1

]T
, d =

[
−3 2 0 −6 1

]T
, e =

[
0 0 −2 −3 1

]T
.

Then

α = −0.53642 , β = −0.25920 , γ = −0.17666 , δ = 0.21745 , ρ = −0.11473

and

S = −
{
53642× 10−1

104

}
a+

(
− 25920× 10−3 × 10−2

)
b−

{
17666× 10−2

102 × 10

}
c

+

{
(21745)×−1000

100

}
d+ (−0.11473)e.
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Determinants are used to determine the ratio in linear algebra and outer product provides
geometrical representation of these ratios without inclusion of coordinates. That is why
geometric algebra is coordinate free.

Remark 2 Dual mapping develops a connection between exterior and cross products.
Let a = a1e1 + a2e2 + a3e3 and b = b1e1 + b2e2 + b3e3 are two vectors in R3. Then

a ∧ b = det

(
a2 a3
b2 b3

)
e2 ∧ e3 + det

(
a3 b3
a1 b1

)
e3 ∧ e1 + det

(
a1 a2
b1 b2

)
e1 ∧ e2,

(a ∧ b)∗ = a× b = det

(
a2 b2
a3 b3

)T

e1 + det

(
a3 a1
b3 b1

)T

e2 + det

(
a1 b1
a2 b2

)T

e3.

Coefficients of both vectors and bivectors in determinant form are scalar quantities.
Cross product of two vectors is natural dual to their outer product and vice versa, so
this concept can be easily extended to higher dimensional geometric algebras of both
Euclidean and non-Euclidean spaces [12, 14, 21].

3.4 Contraction and duality

Arbitrary blades can’t be endowed with inner product, inner product of a vector can be
computed with a two blade, but unfortunately that lacks orientation concept. To preserve
or maintain orientation, contraction is important and more efficient than inner product.
⌋ : ∧aRn × ∧bRn → ∧(b−a)Rn is bilinear and distributive over addition and is grade
reduction operation. Blades of same grade made it identical to inner product. Contraction
can be either implicit or explicit, where former is applicable to only degenerate metrics
and latter one is for both degenerate as well as non degenerate metrics. We are using
explicit case frequently. For any X,Y and Z blades, X⌋Y = {Ỹ ⌋X̃ }̃ = (−1)y(x+1){Y ⌋X},
where X⌋Y is a blade contained in Y and is orthogonal to Z.
Y ⌋X and Y ⌊X are distinguished only by grade dependent sign. Therefore, geomet-

ric algebra allows us to perform all sorts of product operations such as (line×line),
(line×area), (area×area), (line×volume), (area×volume), (volume×volume) and (hyper-
volumes × hypervolumes) reliable on dimension. All the above products or operations
can be derived from geometric product which is generally neither commutative nor anti-
commutative and is without geometric intuition, so it acts as a fundamental operation
in geometric algebra.

Dual of a blade Ak ∈ Cln,0 is A∗
k = AK⌊I−1

n , where In is pseudoscalar in Cln and the
process of finding dual to a blade is dualization. Consider a blade A2 = 3e1 + 2e2 ∈ Cl2.
Then

A∗
2 = (3e1 + 2e2)⌋I−1

2 = 3
{
e1⌋(e2 ∧ e1)

}
+ 2

{
e2⌋(e2 ∧ e1)

}
= 2e1 − 3e2.

Dual is always orthogonal to other blades and requires no coordinates to its notion.
Sign of vector changes while computing its dual twice, original blade or element can
be retrieved by undualization. i.e, A−∗

k = Ak⌋In. More information and applications of
contraction and dual can be accessed in [1, 29].
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4. Introduction to g-numbers

The number systemN = R(a, b) ([32, 38, 39]) has following unique features irrespective
of associativity and distributivity

(1) a2 = 0 = b2 with a and b are nilpotents,
(2) ab+ ba = 1 with ab ̸= ba (partition unity),

where R ⊂ N and a and b are also termed as g-numbers since of their geometric inter-
pretation.

Canonical basis of N = R(a, b) over reals is

(
ab a
b ba

)
. Every g number has the form

[g] = g11ab+ g12a+ g21b+ g22ba which implies that [g] =

(
g11 g12
g21 g22

)
, gij ∈ R.

Multiplication table with mutual annihilation property ab(1 − ba) = (ba)−1 can be
constructed for such a number system. Addition and multiplications can be easily per-
formed in such a number system and each g-number can be decomposed into even and
odd components:

g = g+ + g− =
(
g11ab+ g22ba

)
+
(
g12a+ g21b

)
,

where g+ is even part and g− is odd. The operations like reversion, inversion and mixed
conjugation of multivectors can be applied here too.

Definition 4.1 Reversion and Mixed Conjugation in g numbers:
g̃ = (g− + g+)̃ = g− + g̃+, g+ = g11ba + g22ba as (ab)̃ = ba (fg)̃ = g̃f̃ . ḡ = g+ − g−
is inversion, ḡ− = −g12a − g21b = −g−, g∗ = (g̃)̄ = (g− + g̃+)̄ = −g− + g̃+, (f + g)∗ =
f∗+g∗ = (f++g+)−(f−+g−), (fg)

∗ = g∗f∗ = (fg)∗−+(fg)∗+ as (fg)∗+ = (g−f−+ g̃+f̃+)
g numbers can be similarly decomposed into symmetric and anti-symmetric parts like

in geometric product of vectors and multivectors. The recursive formula for a vector m
with a k-vector Ak ism⌋Ak = m⌋(l1∧l2∧...∧lk) =

∑k
i=1(−1)i−1l1∧l2∧...∧(m⌋li)∧...∧lk.

The relation between reversion, scalar product, left and right contractions, and outer
product is given by

Ẽ ⋆ (D⌊C )̃ = E ⋆ (D⌊C) = (D⌊C) ⋆ E,

P ⋆ (Q⌋S) = (P ∧Q) ⋆ S,

m⌋(m1 ∧m2) = (m ·m1)m2 −m1(m.m2),

m⌋(m1 ∧m2 ∧m3) = (m ·m1)m2m3 − (m ·m2)m1m3 + (m ·m3)m1m2.

The symmetric product of any three arbitrary odd g- numbers f1, f2, f3 ∈ N is

f1 ⊗ (f2 · f3) = (f1 · f2)f3 − (f1 · f3)f2

Similar procedure is applicable to n ⩾ 3 odd g numbers.

5. Applications of geometric algebra

Example 5.1 Area of triangle in exterior product:
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e1

e2

−→
A2

−→
A3

−→
A1

Let
−→
A1

−→
A3 =

−→
C ,

−→
A1

−→
A2 =

−→
A and

−→
A2

−→
A3 =

−→
B , and

−→
A =

−→
A2 −

−→
A1 and

−→
B =

−→
A3 −

−→
A2.

In coordinate form
−→
A1 = (α1, β1),

−→
A2 = (α2, β2) and

−→
A3 = (α3, β3). Area of triangle

M = 1
2{
−→
A ∧

−→
B} is a tensor. M = 1

2{(A2 −A1) ∧ (A3 −A2)} and

4

2
M = {α1β2 − α2β1 + α2β3 − α3β2 + α3β1 − α1β3}e1e2;

orM = 2̂B
4 {A1∧A2+A2∧A3−A1∧A3}, where B̂ = e1e2 and therefore, 1

2{
−→
A ∧

−→
B} = B̂

(Area).
Therefore, each bivector formed by any two basis vectors represents area element and

this wedge composition is easily accessible to compute area of planar elements as well
as volume of trivectors in space, irrespective of design of two dimensional and three
dimensional elements.

Theorem 5.2 Let U1, U2, ..., Um and V be the vector spaces. If T : U1⊗U2...⊗Um −→ V
is a mapping, then there exists corresponding map T

′
: U1 ∧ U2... ∧ Um −→ V .

Proof. U
(
U1 ∧ U2 ∧ ... ∧ Um

)
possess basis elements (u1 ∧ u2 ∧ ... ∧ um) and extension

of mapping T is T1 : U
(
U1 ∧ U2 ∧ ... ∧ Um

)
−→ V defined by

T1
(
U1 ∧ U2 ∧ ... ∧ Um

)
= T

(
U1 ∧ U2 ∧ ... ∧ Um

)
The map T1 = 0. For any basis element λui

T1

{(
u1 ∧ u2 ∧ ... ∧ λui ∧ ... ∧ um

)
− λ

(
u1 ∧ u2 ∧ ... ∧ um

)}

= T1

(
u1 ∧ u2 ∧ ... ∧ λui ∧ ... ∧ um

)
− λT1

(
u1 ∧ u2 ∧ ... ∧ um

)
= T

(
u1 ∧ u2 ∧ ... ∧ λui ∧ ... ∧ um

)
− λT

(
u1 ∧ u2 ∧ ... ∧ um

)
= λT

(
u1 ∧ u2 ∧ ... ∧ ui ∧ ... ∧ um

)
− λT

(
u1 ∧ u2 ∧ ... ∧ um

)
,

=⇒ T1

{(
u1 ∧ u2 ∧ ... ∧ λui ∧ ... ∧ um

)
− λ

(
u1 ∧ u2 ∧ ... ∧ um

)}
= 0.

Other generators can be proved synonymously. From fundamental theorem of factor
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spaces, there exists a map

T
′
: U

(
U1 ⊗ U2 ⊗ ...⊗ Um

)/
U0

(
U1 ⊗ U2 ⊗ ...⊗ Um

)
−→ V

defined by

T
′
(
u1 ∧ u2 ∧ ... ∧ um

)
= T

(
u1 ⊗ u2 ⊗ ...⊗ um

)
.

■

Mapping T
′
is clearly unique, because elements of the form u1 ∧ u2 ∧ ...∧ um generate

U1∧U2∧...∧Um and this theorem shows connection between tensor products and exterior
products.

Theorem 5.3 The rotation generated by reflections of arbitrary vector X along the
unit vectors m and n is

(mXm)(nXn) = (mXm)(nXn) = 2(m ·X)
{
2(n ·X)n−X

}
m−

{
2(n ·X)n−X

}
X.

Proof. Geometric product of

mX = m ·X +m ∧X =
1

2

(
mX +Xm

)
+

1

2

(
mX −Xm

)
,

mX = mX +
1

2

(
Xm−Xm

)
=

1

2

(
mX +mX

)
+

1

2

(
Xm−Xm

)
.

Bilinear form Q[m,X] = 1
2

{
Q[m,X] +Q[X,m]

}
is symmetric part of mX.

Q[m,X]m = mXm+
1

2

{
Q[m,m]X −mXm

}
,

1

2

{
(m+X)(m+X)−mm−XX

}
=

1

2

(
mX +Xm

)
=

1

2

{
Q[m+X,m+X]−Q[m,m]−Q[X,X]

}
⇒ 1

2

{
Q[m,m] +Q[m,X] +Q[X,m] +Q[X,X]−Q[m,m]−Q[X,X] =

1

2

(
mX +Xm

)
.

mXm = 2(m ·X)m− (m ·m)X = 2Q[m,X]m−X, nXn = 2(n ·X)n−X
(mXm)(nXn) = 4(m ·X)(n ·X)(mn)− 2(n ·X)(nX)− 2(m ·X)(mX) +XX

(mXm)(nXn) = 2(m ·X)
{
2(n ·X)n−X

}
m−

{
2(n ·X)n−X

}
X.

■

Lemma 5.4 For n ∈ N and arbitrary vectors X and a, the expression for addition of
reflections along direction a is n(aXa) = 2nQ[a,X]a− nQ[a, a]X.

Proof. From the above theorem (aXa) = 2Q[a, x]a−Q[a, a]X and

(aXa) + (aXa) = 2Q[a, x]a−Q[a, a]X + 2Q[a, x]a−Q[a, a]X = 4Q[a, x]a− 2Q[a, a]X
(aXa)+(aXa)+(aXa) = 2Q[a, x]a−Q[a, a]X+2Q[a, x]a−Q[a, a]X+2Q[a, x]a−Q[a, a]X

...
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(aXa) + (aXa) + ...+ (aXa) =
2Q[a, x]a−Q[a, a]X + 2Q[a, x]a−Q[a, a]X + ...+ 2Q[a, x]a−Q[a, a]X

⇒ (aXa) + (aXa) + ...+ (aXa) = 2nQ[a, x]a− nQ[a, a]X
n(aXa) = 2nQ[a,X]− nQ[a, a]X

If a is unit vector, then n(aXa) = 2nQ[a,X]− nX. ■

Theorem 5.5 Formation of trivector from an arbitrary bivector, two unit bivectors and
a vector.

x ∧ y ∧ z =
{
(x ∧ y)e12 · z)

}
e12

Proof. Let C = x∧y and using associativity (Ce12)z = C(e12z) as Ce12 is product of C
and unit bivector e12, and (Ce12) · z = C(e12z), where inner product [27] is

(
(Ce12) · z

)
=

C(e12z). Anti-commutative property appears in product of vector with a bivector, and it
is obvious that both C and z are parallel. By using anti commutative nature of bivector
(a∧b = −b∧a), we have (Ce12) ·z = C(e12z) = C(−ze12) and (Ce12) ·z =

(
Cz(−e12)

)
=(

Cz(−1e12)
)
. Geometric product of Cz = C · z +C ∧ z and inner product is symmetric.

So, {C ∧ z+ z ·C
}
(−1e12) = (Ce12) · z Since e1 and e2 are orthonormal and −1 = (e12)

2,

C · z
(
(e12)

2e12)
)
−
(
z ∧ C

[
(e12)

2e12)
])

=
(
C ∧ z

[
(e12)

2e12)
])
.

As we know e212 = −1 implies that e312 = −e12 and (−e12)2 = 1.

{
(Ce12) · z

}
e12 =

(C ∧ z){(e312)e12} and

{
(x ∧ y)e12 · z)

}
e12 = x ∧ y ∧ z. ■

Thus, this result can be elongated to form quad-vectors and their analogous in higher
dimensional cases.

6. Conclusion

The applications of geometric algebra cited above are not enough and doesn’t impart
ample about it. Efforts are on to develop and elaborate this field in each and every
sub domain of Mathematics, Physics and Computer Science. Special cases of geometric
algebra, Outer Product Null Space (OPNS) and Inner Product Null Space (IPNS) can
be used to reconnoitre this with vital role played by Hodge dual in them and, in GA
softwares, GAALOP (Geometric Algebra Algorithm Optimizer) and CluViz.

Acknowledgement

The authors are immensely thankful to the editors and anonymous reviewers for their
on time valuable comments and suggestions, which have helped in improving the quality
of the paper to large extent.

References

[1] R. Ablamowicz, B. Fauser, On the transposition anti involution in real Clifford algebras I: The transposition
map, Linear and Multilinear Algebra. 59 (12) (2011), 1331-1358.



T. Manzoor and A. Akgül / J. Linear. Topological. Algebra. 11(02) (2022) 143-157. 157

[2] R. Alves, D. Hildenbrand, C. Steinmetz, P. Uftring, Efficient development of competitive mathematica so-
lutions based on geometric algebra with gaalopweb, Advances in Applied Clifford Algebras. 30 (4) (2020),
1-18.

[3] E. Artin, Geometric Algebra, Interscience Publ. Inc, London, 1957.
[4] W. L Bade, H. Jehle, An introduction to spinors, Reviews of Modern Physics. 25 (1953), 3:714.
[5] E. Bayro-Corrochano, A. M. Garza-Burgos, J. L Del-Valle-Padilla, Geometric intuitive techniques for human

machine interaction in medical robotics, Inter. J. Social Robotics. 12 (1) (2020), 91-112.
[6] J. B. Literatura, Z historie lineárńı algebry, Matfyzpress (Praha), 2007.
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