کاربرد روش میکرواستخراج مایع-مایع پخشی مبتنی بر تمرکزسازی سرمایشی، کوپلشده به کروماتوگرافیگازی بهمنظور اندازهگیری تعدادی از آفتکشهای ارگانوفسفره در نمونههای آبمیوه
الموضوعات :
محمد رضا افشار مقدم
1
,
جلیل خندقی
2
1 - مرکز ایمنی غذا و دارو، دانشگاه علوم پزشکی تبریز، تبریز، ایران
2 - استادیار،گروه علوم و صنایع غذایی، واحد سراب، دانشگاه آزاد اسلامی ، سراب، ایران.
تاريخ الإرسال : 05 الثلاثاء , جمادى الأولى, 1441
تاريخ التأكيد : 14 السبت , شوال, 1441
تاريخ الإصدار : 27 الجمعة , صفر, 1444
الکلمات المفتاحية:
کروماتوگرافی گازی,
آبمیوه,
آفتکشهایارگانو فسفره,
میکرواستخراج مایع-مایع پخشیمبتنی برتمرکزسازیسرمایشی,
ملخص المقالة :
آبمیوهها منبع غنی از ویتامینها، آمینواسیدها و املاح مختلف هستند و به عنوان نوشیدنی در سراسر جهان استفاده میشوند. میوهها به عنوان مواد خام آبمیوهها بهطور مرتب تحت تاثیر آفات، قارچها و حشرات متفاوت قرار میگیرند که منجر به کاهش کیفیت و کمیت آنها میگردد لذا از آفتکشهای گوناگون جهت جلوگیری از ضایعات وارده به محصولات کشاورزی بطور گستردهای استفاده میشود. با توجه به این نکات و با توجه به مصرف این مواد توسط انسانها، اندازهگیری باقیمانده آنها در میوهها و آبمیوهها بسیار حائز اهمیت میباشد. در این کار پژوهشی روش میکرواستخراج مایع-مایع پخشی مبتنی بر تمرکزسازی سرمایشی برای پیش-تغلیظ و استخراج تعدادی از آفتکشهای ارگانوفسفره از نمونههای آبمیوه ارزیابیشده و سپس اندازهگیری کمی آنها به روش کروماتوگرافی گازی انجام شدهاست. اثر عوامل موثر شامل نوع و حجم حلال استخراجکننده، دمای محلول آبی، حجم محلول هیدروکلریک اسید و قدرت یونی بر روی کارایی استخراج مورد بررسی قرارگرفته و بهینهسازی شد. تحت شرایط بهینه، کارایی روش پیشنهادی 4/92-9/64 درصد بهدست آمد. حدود تشخیص در محدودهی 3/4-67/0 میکروگرم بر لیتر و محدودهی خطی در گسترهی 4000-25/2 میکروگرم بر لیتر بدست آمدند. روش پیشنهادی ساده، قابل اعتماد و ارزان بوده و مصرف کم حلالهای آلی و زمان آنالیز کوتاه از دیگر مزایای آن میباشد.
المصادر:
Amini, R., Khandaghi, J. and Afshar mogaddam, M.R. 2018. Combination of vortex-assisted liquid–liquid extraction and air-assisted liquid–liquid microextraction for the extraction of Bisphenol A and Bisphenol B in canned doogh samples. Food Analytical Methods, 11: 3267–3275.
Baig, S.A., Akhtera, N.A., Ashfaq, M. and Asi, M.R. 2009. Determination of the Organophosphorus Pesticide in Vegetables by High-Performance Liquid Chromatograph. American-Eurasian Journal of Agriculture and Environmental Science, 6(5): 513-519.
Balali Mood, M., Balali Mood, K., Moodi, M. and Balali Mood, B. 2012. Review Article: Health Aspects of Organophosphorus Pesticides in Asian Countries. Iranian Journal of Public Health, 41(10): 1-14.
Bhanti, M. and Taneja, A. 2007. Contamination of vegetables of different seasons with organophosphorous pesticides and related health risk assessment in northern India. Chemosphere, 69: 63-68.
Bidari, A., Ganjali, M.R., Norouzi, P., Hosseini, M. R. M. and Assadi, Y. 2011. Sample preparation method for the analysis of some organophosphorus pesticides residues in tomato by ultrasound-assisted solvent extraction followed by dispersive liquid-liquid microextraction. Food Chemistry, 126: 1840-1844.
Chandran, S. and Singh, R. 2007. Comparison of various international guidelines for analytical method validation. International Journal of Pharmaceutical Sciences, 62(1): 4-14.
Emami, A., Rastegar, H., Amirahmadi, M., Shoeibi, S. and Mousavi, Z. 2015. Multi-residue analysis of pesticides in pistachio using gas chromatography-mass spectrometry (GC/MS). Iranian Journal of Toxicology, 8(2): 1174-1181.
EU Pesticides database. Pesticide EU-MRLs. Regulation EC No. 396/2005. 2013; Available at: http://ec.europa.eu/sanco-pesticides.
European Commission Decision 2002/657/EC, implementing Council Directive 96/23/EC. concerning the performance of analytical methods.
Farajzadeh, M. A. and Afshar Mogaddam, M.R. 2016. Acid–base reaction-based dispersive liquid–liquid microextraction method for extraction of three classes of pesticides from fruit juice samples. Journal of Chromatography A, 143129: 8-16.
Farajzadeh, M. A., Afshar Mogaddam, M.R. and Alizadeh Nabil, A.A. 2015. Polyol-enhanced dispersive liquid–liquid microextraction coupled with gas chromatography and nitrogen phosphorous detection for the determination of organophosphorus pesticides from aqueous samples, fruit juices, and vegetables. Journal of Separation Science, 38: 4086–4094.
Ganjeizadeh, f., Mahdavi, V. and Aminaee, M.M. 2017. Evaluation of diazinon and oxydimeton-methyl residues by GC-NPD in tomatoes grown in Kerman greenhouse. Journal of Agricultural Science and Technology, 19: 113-120.
Gilden, R.C., Huffling, K. and Sattler, B. 2010. Pesticides and health risks. Journal of Obstetrics and Gynaecology, 39: 103–110.
Jalili, V., Barkhordari, A. and Ghiasvand 2019. New extraction media in microextraction techniques, A review of reviews. Microchemical Journal, DOI: 10.1016/ 104386.
Khodadadi, M., Samadi, M.T., Rahmani, A.R., Maleki, R., Resani, A.A. and Shahidi, R. 2010. Determination of organophosphorous and carbamate pesticides residue in drinking water resources of Hamadan in 2007. International Journal of Environmental Research, 2: 250‒257.
Lemos, V. A. and Oliveira, L. A. 2015. Ultrasound-assisted temperature-controlled ionic liquid microextraction for the
preconcentration and determination of cadmium content in mussel samples. Food Control, 50: 901-906.
Mansour, F.R. and Danielson, N.D. 2017. Solidification of floating organic droplet in dispersive liquid-liquid microextraction as a green analytical tool. Talanta, 1701: 22-35.
Mitra, S. 2003. Sample preparation techniques in analytical chemistry, John Wiley pub. New Jersey, pp. 12-35.
Ojha, A., Yaduvanshi, S.K. and Srivastava, N. 2011. Effect of combined exposure of commonly used organophosphate pesticides on lipid peroxidation and antioxidant enzymes in rat tissues. Pesticide Biochemistry and Physiology, 99: 148-156.
Pil-Bala, B., Khandaghi J. and Afshar Mogaddam, M.R. 2019. Analysis of endocrine-disrupting compounds from cheese samples using pressurized liquid extraction combined with dispersive liquid–liquid microextraction followed by high-performance liquid chromatography. Food Analytical Methods, 12: 1604–1611.
Psillakis, E. and Kalogerakis, N. 2003. Developments in liquid‒phase microextraction. Trends in Analytical Chemistry, 22: 565–574.
Razzaghi, M., Khanjani, N. and Daneshi, S. 2016. Contamination with organophosphate toxins in humans in Iran: A Systematic review. Journal of Health and Development, 5(1): 90-97.
Rezaee, M., Assadi, Y., Milani Hosseini, M. R., Aghaee, E., Ahmadi, F. and Berijani, S. 2006. Determination of organic compounds in water using dispersive liquid‒liquid microextraction. Journal of Chromatography A, 1116: 1‒9.
Safari, M. and Zandian, A. A rare case of organophosphate poisoning by accidental injection of toxin. Iranian Journal of Pediatrics, 23(1): 4.
Saraji, M. 2005. Dynamic headspace liquid‒phase microextraction of alcohols. Journal of Chromatography A, 1062: 15‒21.
Shakoori, A., Mahasti, P. and Moradi, V. 2017. Determination of twenty organophosphorus pesticides in wheat samples from different regions of Iran. Iranian Journal of Toxicology, 11(5): 37-44.
Sharma, D., Nagpal, A., Pakade, Y.B. and Katnoria, J.K. 2010. Analytical methods for estimation of organophosphorus pesticide residues in fruits and vegetables: A review. Talanta, 82(4): 1077-1089.
Vanderhoff, G.R. and Van Zoonen, P. 1999. Trace analysis of pesticides by gas chromatography. Journal of Chromatography A, 843: 301–322.
Viñas, p., Campillo, N. and Vasil Andruch, V. 2015. Recent achievements in solidified floating organic drop microextraction. Trends in Analytical Chemistry, 68: 48-77.
_||_