سنتز سبز نانوذرات نقره با استفاده از عصاره آبی بذر بادیان رومی (Pimpinella anisum) و بررسی فعالیت آنتی اکسیدانی آن
الموضوعات :علی سرداریان 1 , وحید حکیم زاده 2 , سید هاشم اخلاقی فیض اباد 3
1 - دانشگاه آزاد اسلامی واحد قوچان
2 - استاد یار گروه علوم صنایع غذایی دانشگاه آزاد اسلامی واحد قوچان
3 - دانشیار گروه شیمی دانشگاه آزاد اسلامی واحد سبزوار
الکلمات المفتاحية: XRD, SEM, Pimpinella anisum, نانوذرات نقره, جسم کریستالی (متبلور),
ملخص المقالة :
Pimpinella anisum، گیاه دارویی یک ساله و متعلق به خانواده Apiaceae است. این گونه به صورت گسترده پخش شده و در اروپا، ترکیه، ایران قفقاز، آسیای مرکزی، سوریه و مصر یافت میشود عصاره مایع Pimpinella anisum برای سنتز سبز نانوذرات نقره با استفاده از احیاء زیستی محلول مایع نیترات نقره استفاده گردید. خواص نانو ذرات نقره به وسیله طیف سنجی UV-Vis، تبدیل فوریه طیف سنجی مادون قرمز (FTIR)، آنالیز انکسار اشعه X (XRD)، اسکن میکروسکوپ الکترونی (SEM) و آنالیز پراکنش انرژی اشعه X (EDAX) تعیین گردید. افزایش میزان جذب در طول موج 420 nm برای ثبت تشکیل یک سوسپانسیون کلوئیدی از نانوذرات نقره استفاده شد. خصوصیات اتصال نانوذرات نقره اندود سنتز شده از عصاره مایع Pimpinella anisum به وسیله FTIR آنالیز شدند. مطالعات XRD نشان دادند که بسیاری از نانوذرات مکعبی بوده و سیمایی مکعب محور از نظر شکل داشتند. آنالیز SEM، اندازه و شکل نانوذرات نقره را نشان داد و EDAX حضور نقره را تایید کرد. نانوذرات سنتز شده نقره، فعالیت مهار رادیکالهای آزاد DPPH را نشان دادند.
1. Mozaffarian, V. 2013. Identification of medicinal and aromatic plants of Iran.FarhangMoaser Publications. Tehran, Iran. Pp 1201-1202.
2. Emami, A., Ardakani M.R.S., Naeini, N.N. 2004. Herbal treatment, Rah Kamal Publications. Tehran, Iran.
3. Dipankar, C., Murugan, S. 2012. The green synthesis, characterization and evaluation of the biological activities of silver nanoparticles synthesized from Iresine herbstii leaf aqueous extracts. Colloids and Surfaces B: Biointerfaces.98, 112– 119.
4. Farooqui, M.A., Chauhan P.S., Krishnamoorthy, P., Shaik, J. 2010. Extraction of silver nanoparticles from the leaf extracts of Clerodendrumincerme. Dig. J. Nanomater. Biostruct. 5, 43-49.
5. Hafez, E.E., Kabeil, S.S. 2013. Antimicrobial Activity of ano-silver Particles Produced by Micro Algae. J Pure Appl Microbiol. 7, 35-42.
6. Sathishkumar, M., Sneha K., Won S.W., Cho C.W., Kim S., Yun Y.S. 2009. Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity. Colloids and Surfaces B-Biointerfaces. 73(2), 332-338.
7. Alaraidh, I.A., Ibrahim, M.M., El-Gaaly, G.A. 2014. Evaluation of green synthesis of Ag nanoparticles using Eruca sativa and Spinacia oleracea leaf extracts and their antimicrobial activity. Iran J Biotechnol. 12(1), e12392.
8. Kumar P.P.N., Vijay Pammi S.V.N., Kollu P., Satyanarayanad, K.V.V., Shameem, U. 2014. Green synthesis and characterization of silver nanoparticles using Boerhaavia diffusa plant extract and their antibacterial activity. Industrial Crops and Products. 52, 562-566.
9. Thirunavoukkarasu, M., Balaji, U., Behera, S., Panda, P.K., Mishra, B.K. 2013. Biosynthesis of silver nanoparticle from
leaf extract of Desmodium gangeticum (L.) DC. and its biomedical potential. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy. 116, 424-427.
10. Pasupuleti, V.R., Prasad, T.N.V.K.V., Shiekh, R.A., Balam, S.K., Narasimhulu, G., Reddy C.S., AbRahman, I., Gan, S.H. 2013. Biogenic silver nanoparticles using Rhinacanthus nasutus leaf extract: synthesis, spectral analysis, and antimicrobial studies. Int J Nanomed. 8, 3355-3364.
11. Bunghez, R., Ghiurea, M., Faraon, V., Ion R.M. 2011. Green synthesis of silver nanoparticles obtained from plant extracts and their antimicrobial activites. J Optoelectron Adv Mater. 13(7), 870-873.
12. Jegadeeswaran, P.,Shivaraj, R., Venckatesha, R. 2012. Green synthesis of silver nanoparticles from extract of Padinatetra stromatica leaf. Dig J Nanomater Bios. 7(3), 991-998.
13. Gardea-Torresdey, J.L., Gomez, E., Peralta-Videa, J.R., Parsons, J.G., Troiani, H., Jose-Yacaman, M. 2003. Alfalfa Sprouts: A Natural Source for the Synthesis of Silver Nanoparticles. Langmuir. 19, 1357-1361.
14. Gardea-Torresdey, J.L., Rodriguez, E., Parsons-Jason, G., Peralta-Videa, J.R., Meitzner, E.G., Cruz-Jimenez, G. 2005. Use of ICP and XAS to determine the enhancement of gold phytoextraction by Chilopsis linearis using thiocyanate as a complexing agent. Anal Bioanal Chem. 382(2), 347-352.
15. Vijayaraghavan, K., Kamala Nalini, S.P., Udaya Prakash, N., Madhankumar, D. 2012. One step green synthesis of silver nano/microparticles using extracts of Trachyspermum ammi and Papaver somniferum, Colloids and Surfaces B: Biointerfaces. 94, 114– 117.
16. Song, J.Y., Kim, B.S. 2009. Rapid biological synthesis of silver nanoparticles using plant leaf extracts, Bioprocess Biosyst Eng. 32, 79–84.
17. Antony, J.J., Sithika, M.A.A., Joseph, T.A., Suriyakala, U., Sankarganesh, A., Siva, D., Kalaiselvi, S., Achiraman, S., 2013. In vivo antitumor activity of biosynthesized silver nanoparticles using Ficus religiosa as a nanofactory in DAL induced mice model, Colloids and Surfaces B: Biointerfaces. 108, 185– 190.
18. Chandran, S.P., Chaudhary, M., Pasricha, R., Ahmad, A., Sastry, M. 2006. Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract, Biotechnology Progress. 22(2), 577-583.
19. Sheny, D.S., Mathew, J, Philip, D. 2012. Synthesis characterization and catalytic action of hexagonal gold nanoparticles using essential oils extracted from Anacardium occidentale, Spectrochimica Acta PART A-Molecular and Biomolecular Spectroscopy. 97, 306-310.
20. Silver, S. 2003. Bacterial silver resistance: molecular biology and uses and misuses of silver compounds, FEMS Microbiol Rev. 27(2-3), 341-53.
21. Sondi, I., Salopek-Sondi, B. 2004. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria, J Colloid Interface Sci. 275(1), 177-82.
22. Suman, T.Y., Radhika Rajasree, S.R., Ramkumar, R., Rajthilak, C., Perumal, P. 2014. The Green synthesis of gold nanoparticles using an aqueous root extract of Morinda citrifolia L., Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 118, 11–16.
23. Elangovan, K., Elumalai, D., Anupriya, S., Shenbhagaraman, R., Kaleena, P.K., Murugesan, K. 2015. Phytomediated biogenic synthesis of silver nanoparticles using leaf extract of Andrographis echioides and its bio-efficacy on anticancer and antibacterial activities, Journal of Photochemistry and Photobiology B: Biology. 151, 118–124.
24. Rigo, C., Ferroni, L., Tocco, I., Roman, M., Munivrana, I., Gardin, C., Cairns, W.R.L., Vindigni, V., Azzena, B., Barbante, C., Zavan, B. 2013. Active Silver Nanoparticles for Wound Healing, Int J Mol Sci. 14(3), 4817–4840.
25. Motlagh, N, Mosavian, M, Mortazavi, S, Tamizi, A. 2012. Beneficial Effects of Polyethylene Packages Containing Micrometer-Sized Silver Particles on the Quality and Shelf Life of Dried Barberry (Berberis vulgaris). Journal of Food Science. 71(1), 1-8.
26. Metak, A.M. 2015. Effects of Nanocomposite Based Nano-Silver and Nano-Titanium Dioxideon Food Packaging Materials, Int. J. Applied Sci. and Technol. 5(2), 26-40.
27. Costa, C., Conte, A., Buonocore, G.G., Lavorgna, M., Del Nobile, M. A. 2012. Calcium–alginate coating loaded with silver–
montmorillonite nanoparticles to prolong the shelf-life of fresh-cut carrots. Food Res. Int. 48, 164–169.
28. Dhall, R.K. 2013. Advances in edible coatings for fresh fruits and vegetables: a review. Crit. Rev. Food Sci. Nutr. 53, 435–450.
29. Cushen, M., Kerry, J., Morris, M., Cruz-Romero, M., Cummins, E. 2014. Evaluation and simulation of silver and copper nanoparticle migration from polyethylene nanocomposites to food and an associated exposure assessment. J. Agric. Food Chem. 62 (6), 1403– 1411.
30. Emamifar, A., Kadivar, M., Shahedi, M., Soleimanian-Zad, S. 2010. Evaluation of nanocomposite packaging containing Ag and ZnO on shelf life of fresh orange juice. Innovative Food Sci. Emerg. Technol. 11, 742–748.
31. Berekaa, M.M. 2015. Nanotechnology on food industry; advances in food processing, packaging and food safety. Int. J. Curr. Microbiol. Appl. Sci. 4, 345–357.
32. Duncan, T.V. 2011. Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J. Colloid Interface Sci. 363, 1–24.
33. Echegoyen, Y., Nerı´n, C. 2013. Nanoparticle release from nano-silver antimicrobial food containers. Food Chem Toxicol. 62, 16–22.
34. Mahdavi, B., Yaacob, W.A., Din, L.B., Jahangirian, H. 2013. Antioxidant activity of consecutive extracts of the base, stem and leaves of etlingera brevilabrum. Asian J Chem. 25(7), 3937-3941.
35. Tirzitis, G., Bartosz, G. 2010. Determination of antiradical and antioxidant activity: basic principles and new insights. Acta Biochimica Polonica. 57(1), 139–142.