تغییرات کیفیت چربی میگوی سفید هندی پرورشی (Fenneropenacus indicus) طی فرایند کنسروسازی
الموضوعات :هومن تیموری 1 , بهاره شعبان پور 2 , علی شعبانی 3 , عصمت محمدی 4
1 - دانشگاه علوم کشاورزی و منابع طبیعی گرگان
2 - دانشگاه علوم کشاورزی و منابع طبیعی گرگان
3 - دانشگاه علوم کشاورزی و منابع طبیعی گرگان
4 - دانشگاه علوم کشاورزی و منابع طبیعی گرگان
الکلمات المفتاحية: کنسرو, سرخ کردن, میگو, کیفیت تغذیه ای,
ملخص المقالة :
این تحقیق به منظور بررسی تغییرات کیفی چربی میگو سفید هندی در دو اندازه ریز (120-100) و متوسط (80-70) طی فرایند کنسرو کردن، به صورتهای خام، سرخ شده و کنسرو شده انجام شد. در این مطالعه ترکیبات شیمیایی از قبیل پروتئین،TBA ، TVN، FFA، ترکیبات فلورسانس در هر دو تیمار میگوی ریز و متوسط و در حالتهای خام، سرخ شده و کنسرو شده، و پروفیل اسید چرب و اسیدآمینه در میگوی ریز خام و کنسرو شده مورد مطالعه قرار گرفت. نتایج حاصل از آزمایشات نشان داد که میزان پروتئین و FFA در نمونههای کنسرو شده نسبت به میگوی خام کاهش معنیداری در سطح (P<0.05) داشته است. میزان چربی، TVN و TBA در نمونههای کنسرو شده افزایش معنیداری را نشان داد (P<0.05). ولی در سنجش ترکیبات فلورسانس تفاوت معنیداری بین نمونههای خام، سرخ شده و کنسرو شده مشاهده نشد (P>0.05). همچنین اسیدهای آمینه و اسیدهای چرب نمونههای خام و کنسرو شده به روشهای منتخب برای میگوهای ریز در سطح برخی از اجزای پروفیل تفاوتهایی را نشان داد. بر طبق نتایج این مطالعه میتوان اظهار داشت که کنسرو میگو دارای ارزش تغذیهای بالا بوده و میتوان آن را به عنوان یک فراورده مطلوب به شمار آورد.
1. هنرور، م.، لامع، ح. و ولایی، ن. 1376. تهیه کنسرو از میگوهایی که فاقد ارزش صادراتی میباشد. مجله علمی شیلات ایران. شماره 1، صفحات 90-79.
2. Rodríguez, A., Carriles, N., Gallardo, J. M. and Aubourg, S. P. 2009. Chemical changes during farmed coho salmon (Oncorhynchus kisutch) canning: Effect of a preliminary chilled storage. Food Chemistry, 112(2): 362-368.
3. Stein, S. N. 2014. Analysis of the Mineral Composition of Louisiana Wild Caught Shrimp by ICP-OES and Classification of Geographical Origin (Doctoral dissertation, Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science in The School of Nutrition and Food Sciences by Samantha N. Stein BS, Louisiana State University).
4. Ouraji, H., Shabanpour, B., Kenari, A. A., Shabani, A., Nezami, S., Sudagar, M. and Faghani, S. 2009. Total lipid, fatty acid composition and lipid oxidation of Indian white shrimp (Fenneropenaeus indicus) fed diets containing different lipid sources. Journal of the Science of Food and Agriculture, 89(6): 993-997.
5. Lim, C., Ako, H., Brown, C. L. and Hahn, K. 1997. Growth response and fatty acid composition of juvenile Penaeus vannamei fed different sources of dietary lipid. Aquaculture, 151(1-4): 143-153.
6. González-Félix, M. L., Lawrence, A. L., Gatlin, D. M. and Perez-Velazquez, M. 2002. Growth, survival and fatty acid composition of juvenile Litopenaeus vannamei fed different oils in the presence and absence of phospholipids. Aquaculture, 205(3): 325-343.
7. Delfieh, P., Rezaei,M., Hosseini, H., Vali Hosseini, S., Zohrehbakhsh, E. and Regenstein, J. M. 2013. Effects of Cooking Methods on Proximate Composition and Fatty Acids Profile of Indian White Prawn (Fenneropenaeus indicus). Journal of Aquatic Food Product Technology, 22(4): 353–360.
8. Perovic, V. 1976. The canning of fish in tropics. FAO Institue despeches, Morocco. 337-348.9. Ortiz, J., Romero, N., Robert, P., Araya, J., Lopez-Hernández, J., Bozzo, C., Navarrete, E., Osorio, A. and Rios, A. 2006. Dietary fiber, amino acid, fatty acid and tocopherol contents of the edible seaweeds Ulva lactuca and Durvillaea antarctica. Food Chemistry, 99(1): 98-104.
10. Peinado, I., Girón, J., Koutsidis, G. and Ames, J. M. 2014. Chemical composition, antioxidant activity and sensory evaluation of five different species of brown edible seaweeds. Food Research International, 66: 36-44.
11. Vyncke, W. 1970. Direct determination of the thiobarbitoric acid value in trichloracetic acid extracts of fish as a measure of oxidative rancidity. Fette, Seifen, Anstrichmittel, 72(12): 1084-1087.
12. Egan, H., Krik, R. S. and Sawyer, R. 1997. Pearsons Chimical Analysis of Foods. 9 (edi), 609-634.
13. Farag, M. M. 2013. Estimation of Formatting Biogenetic Amines Concentration in Fresh and Processed Sardine Fish Products During Different Storage Conditions. World, 5(6): 628-636.
14. Aubourg, s., Gallardo, J. and Medina, I. 1997. Changes in lipids during different sterilizing conditions in canning albacore (Thunnus alalunga) in oil. International Journal of Food Sceince and Technology, 32(5): 427-431.
15. Cronin, D. A., Powell, R. and Gotmley, R. 1991. An examination of the n-3 and n-6 polyunsaturated fatty acid and status of wild and farmed Atlantic salmon (Salmo salar). Irish journal of Food science and Technology, 53-62.
16. Mohan, C. O., Ravishankar, C. N., Srinivasa Gopal, T. K. and Bindu, J. 2008. Thermal processing of prawn ‘kuruma’ in retortable pouches and aluminium cans. International Journal of Food Science and Technology, 43(2): 200–207.
17. Peplow, A. J., Appledorf, H. and Koburger, J. A. 1973. Effect of boiling, frying, microwave, heating and canning on the proximate, mineral and thiamin content of shrimp. Food Science and Human Nutrition Department, University of Florida, 935: 94-101.
18. Mohan, C. O., Ravishankar, C. N., Bindu, J., Geethalakshmi, V. and Srinivasa Gopal, T. K. 2006. Effect of thermal process time on quality of “shrimp kuruma” in retortable pouches and aluminum cans. Journal of food science, 71(6): S496-S500.
19. Saguy, I. S. and Dana, D. 2003. Integrated approach to deep fat frying: engineering, nutrition, health and consumer aspects. Journal of Food Engineering, 56(2): 143–152.
20. Weber, J., Bochi, V. C., Ribeiro, C. P., Victorio, A. D. M. and Emanuelli, T. 2008. Effect of different cooking methods on the oxidation, proximate and fatty acid composition of silver catfish (Rhamdia quelen) fillets. Food Chemistry, 106(1): 140–146.
21. Keller, J. D. and Kinsella, J.E., 1973. Phospholipid changes and lipid oxidation during cooking and frozen storage of raw
ground beef. Journal of Food Science, 38(7):1200-1204
22. Medina, I., Aubourg, S. P. and Martin, R. P. 1997. Species differentiation by multivariate analysis of phospholipids from canned Atlantic tuna. Journal of Agricultural and Food Chemistry, 45 (7): 2495-2499.
23. Tokunaga, T. 1975. Studies on the quality evaluation of canned marine products, 1: Determination of the ratio of dimethylamine to trimethylamine in canned albacore. Bulletin of the Japanese Society of Scientific Fisheries, 41: 547-553.
24. Aubourg, S. P. 1998. Lipid changes during long-term storage of canned tuna (Thunnus alalunga). Zeitschrift für
1. هنرور، م.، لامع، ح. و ولایی، ن. 1376. تهیه کنسرو از میگوهایی که فاقد ارزش صادراتی میباشد. مجله علمی شیلات ایران. شماره 1، صفحات 90-79.
2. Rodríguez, A., Carriles, N., Gallardo, J. M. and Aubourg, S. P. 2009. Chemical changes during farmed coho salmon (Oncorhynchus kisutch) canning: Effect of a preliminary chilled storage. Food Chemistry, 112(2): 362-368.
3. Stein, S. N. 2014. Analysis of the Mineral Composition of Louisiana Wild Caught Shrimp by ICP-OES and Classification of Geographical Origin (Doctoral dissertation, Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science in The School of Nutrition and Food Sciences by Samantha N. Stein BS, Louisiana State University).
4. Ouraji, H., Shabanpour, B., Kenari, A. A., Shabani, A., Nezami, S., Sudagar, M. and Faghani, S. 2009. Total lipid, fatty acid composition and lipid oxidation of Indian white shrimp (Fenneropenaeus indicus) fed diets containing different lipid sources. Journal of the Science of Food and Agriculture, 89(6): 993-997.
5. Lim, C., Ako, H., Brown, C. L. and Hahn, K. 1997. Growth response and fatty acid composition of juvenile Penaeus vannamei fed different sources of dietary lipid. Aquaculture, 151(1-4): 143-153.
6. González-Félix, M. L., Lawrence, A. L., Gatlin, D. M. and Perez-Velazquez, M. 2002. Growth, survival and fatty acid composition of juvenile Litopenaeus vannamei fed different oils in the presence and absence of phospholipids. Aquaculture, 205(3): 325-343.
7. Delfieh, P., Rezaei,M., Hosseini, H., Vali Hosseini, S., Zohrehbakhsh, E. and Regenstein, J. M. 2013. Effects of Cooking Methods on Proximate Composition and Fatty Acids Profile of Indian White Prawn (Fenneropenaeus indicus). Journal of Aquatic Food Product Technology, 22(4): 353–360.
8. Perovic, V. 1976. The canning of fish in tropics. FAO Institue despeches, Morocco. 337-348.9. Ortiz, J., Romero, N., Robert, P., Araya, J., Lopez-Hernández, J., Bozzo, C., Navarrete, E., Osorio, A. and Rios, A. 2006. Dietary fiber, amino acid, fatty acid and tocopherol contents of the edible seaweeds Ulva lactuca and Durvillaea antarctica. Food Chemistry, 99(1): 98-104.
10. Peinado, I., Girón, J., Koutsidis, G. and Ames, J. M. 2014. Chemical composition, antioxidant activity and sensory evaluation of five different species of brown edible seaweeds. Food Research International, 66: 36-44.
11. Vyncke, W. 1970. Direct determination of the thiobarbitoric acid value in trichloracetic acid extracts of fish as a measure of oxidative rancidity. Fette, Seifen, Anstrichmittel, 72(12): 1084-1087.
12. Egan, H., Krik, R. S. and Sawyer, R. 1997. Pearsons Chimical Analysis of Foods. 9 (edi), 609-634.
13. Farag, M. M. 2013. Estimation of Formatting Biogenetic Amines Concentration in Fresh and Processed Sardine Fish Products During Different Storage Conditions. World, 5(6): 628-636.
14. Aubourg, s., Gallardo, J. and Medina, I. 1997. Changes in lipids during different sterilizing conditions in canning albacore (Thunnus alalunga) in oil. International Journal of Food Sceince and Technology, 32(5): 427-431.
15. Cronin, D. A., Powell, R. and Gotmley, R. 1991. An examination of the n-3 and n-6 polyunsaturated fatty acid and status of wild and farmed Atlantic salmon (Salmo salar). Irish journal of Food science and Technology, 53-62.
16. Mohan, C. O., Ravishankar, C. N., Srinivasa Gopal, T. K. and Bindu, J. 2008. Thermal processing of prawn ‘kuruma’ in retortable pouches and aluminium cans. International Journal of Food Science and Technology, 43(2): 200–207.
17. Peplow, A. J., Appledorf, H. and Koburger, J. A. 1973. Effect of boiling, frying, microwave, heating and canning on the proximate, mineral and thiamin content of shrimp. Food Science and Human Nutrition Department, University of Florida, 935: 94-101.
18. Mohan, C. O., Ravishankar, C. N., Bindu, J., Geethalakshmi, V. and Srinivasa Gopal, T. K. 2006. Effect of thermal process time on quality of “shrimp kuruma” in retortable pouches and aluminum cans. Journal of food science, 71(6): S496-S500.
19. Saguy, I. S. and Dana, D. 2003. Integrated approach to deep fat frying: engineering, nutrition, health and consumer aspects. Journal of Food Engineering, 56(2): 143–152.
20. Weber, J., Bochi, V. C., Ribeiro, C. P., Victorio, A. D. M. and Emanuelli, T. 2008. Effect of different cooking methods on the oxidation, proximate and fatty acid composition of silver catfish (Rhamdia quelen) fillets. Food Chemistry, 106(1): 140–146.
21. Keller, J. D. and Kinsella, J.E., 1973. Phospholipid changes and lipid oxidation during cooking and frozen storage of raw
ground beef. Journal of Food Science, 38(7):1200-1204
22. Medina, I., Aubourg, S. P. and Martin, R. P. 1997. Species differentiation by multivariate analysis of phospholipids from canned Atlantic tuna. Journal of Agricultural and Food Chemistry, 45 (7): 2495-2499.
23. Tokunaga, T. 1975. Studies on the quality evaluation of canned marine products, 1: Determination of the ratio of dimethylamine to trimethylamine in canned albacore. Bulletin of the Japanese Society of Scientific Fisheries, 41: 547-553.
24. Aubourg, S. P. 1998. Lipid changes during long-term storage of canned tuna (Thunnus alalunga). Zeitschrift für