طراحی و ساخت یک پایشگر و ثبت کننده داده جهت ثبت تعداد دفعات استارت خودرو مبتنی بر آنالیز سیگنال ولتاژ پایانه باتری با هدف بهره¬وری انرژی
محورهای موضوعی : مهندسی برق و کامپیوتراشکان کلهر 1 , مجید سنایی پور 2 * , مریم مومنی 3 * , سینا فیضی 4 , سهیل شبان عشینی 5
1 - گروه مهندسی برق، دانشکده مهندسی، دانشگاه اراک، اراک، ایران
2 - گروه مهندسی برق، دانشکده مهندسی، دانشگاه اراک، اراک، ایران
3 - گروه مهندسی برق، دانشکده مهندسی، دانشگاه اراک، اراک، ایران
4 - گروه مهندسی برق، دانشکده مهندسی، دانشگاه اراک، اراک، ایران
5 - گروه مهندسی برق، دانشکده مهندسی، دانشگاه اراک، اراک، ایران
کلید واژه: باتری خوردو, ثبتکننده داده, خدمات گارانتی, ولتاژ پایانه, بهره¬وری انرژی,
چکیده مقاله :
در این مقاله یک روش جدید جهت پایش باتریهای خودرو مبتنی بر ثبت سیگنال ولتاژ پایانه باتری در حین استارت خودرو با هدف ایجاد یک امکان جدید جهت تغییر ضوابط ارائه خدمات گارانتی و بهرهوری انرژی ارائه شده است. در روش پیشنهادی در این مقاله، به جای اینکه خدمات گارانتی بر مبنای زمان استفاده از باتری ارائه گردد بر مبنای تعداد دفعات استفاده از باتری برای استارت خودرو ارائه خواهد شد. برای پیاده سازی روش پیشنهاد شده در این مقاله یک مدار میکروکنترلری طراحی و ساخته شده است. از میکروکنترلر اتمگا 328 پی و میکرو اس دی کارت به ترتیب جهت پایش سیگنال ولتاژ باتری و به عنوان یک حافظه خارجی استفاده شده است. همچنین از یک مقسم ولتاژ مقاومتی برای تغییر بازه تغییرات ولتاژ پایانه باتری به محدوده قابل دریافت توسط میکروکنترلر استفاده شده است. مدار مذکور پس از طراحی و مونتاژ بر روی چند خوردوی سواری مختلف نصب و در شرایط عملی واقعی مورد بررسی قرار گفته است. نتایج این بررسی نشان میدهد سیستم طراحی و ساخته شده به درستی تعداد دفعات استارت خودرو را شمارش کرده و با سایر مشخصات مورد نظر از سیگنال ولتاژ باتری در حین استارت در حافظه در نظر گرفته شده ثبت مینماید. عملکرد موفقیت آمیز نمونه ساخته شده تحت شرایط مختلف، موید کارایی و قابلیت اطمینان بالای روش پیشنهادی در این مقاله میباشد.
This article presents a novel approach to monitoring car batteries, based on the recording of battery terminal voltage signals during the vehicle's startup. The objective is to introduce a new capability for modifying warranty service terms and enhancing energy efficiency. In contrast to the existing approach, the proposed method would provide warranty services based on the number of times the battery is used for starting the car, rather than on the battery's usage time. To facilitate the implementation of the methodology outlined in this article, a microcontroller circuit has been designed and constructed. The microcontroller circuit employs an ATmega328P microcontroller and a micro SD card for monitoring the battery voltage signal and as external memory, respectively. Furthermore, a resistive voltage divider has been utilized to calibrate the range of battery terminal voltage fluctuations to a level that the microcontroller can process. The circuit was designed, assembled, and installed on several different passenger cars, and tested under real-world operating conditions. The results of this examination demonstrate that the designed and built system accurately counts the number of times the car is started and records the desired characteristics of the battery voltage signal during startup in the allocated memory. The successful performance of the prototype under various conditions confirms the high efficiency and reliability of the proposed method presented in this article.
[1] H. Tarzamni, H. S. Gohari, M. Sabahi, and J. Kyyrä, “Non-Isolated High Step-Up DC-DC Converters: Comparative Review and Metrics Applicability” IEEE Transactions on Power Electronics, vol. 39, no. 1, pp. 582 – 625, 2023. doi: 10.1109/TPEL.2023.3264172.
[2] M. Forouzesh, Y. P. Siwakoti, S. A. Gorji, F. Blaabjerg, and B. Lehman, “Step-up DC–DC converters: a comprehensive review of voltage-boosting techniques, topologies, and applications,” IEEE Transactions on Power Electronics, vol. 32, no. 12, pp. 9143-9178, 2017, doi: 10.1109/TPEL.2017.2652318.
[3] S. Hasanpour, A. Afzalian, T. Nouri, “A New Ultra High-Gain DC/DC Converter with Full Soft-Switching Performance and Low Voltage Stress,” Technovations of Electrical Engineering in Green Energy System, vol. 3, no. 3, pp. 85-102, 2024, doi: 10.30486/teeges.2022.1885851.1173.
[4] S. Hasanpour, “Design and Implementation of a New Step-Up DC-DC 16 Converter with Two Extended Outputs for Renewable Energy Applications,” Journal of Iranian Association of Electrical and Electronics Engineers, vol. 21, no. 2, pp. 13-24, 2024, doi: 10.61186/jiaeee.21.2.13.
[5] S. Hasanpour and S. S. Lee, "New Step-Up DC/DC Converter with Ripple Free Input Current," IEEE Transactions on Power Electronics, vol. 39, no. 2, pp. 2811-2821, 2024, doi: 10.1109/TPEL.2023.3336005, 2023.
[6] T. Shamsi, M. Delshad, E. Adib, M. Rouhollah Yazdani, "A Single-Switch DC-DC High Step-Up Converter with Soft Switching for Photovoltaic Applications," Technovations of Electrical Engineering in Green Energy System, vol. 3, no. 3, pp. 1-14, 2024, doi: 10.30486/TEEGES.2024.904808.
[7] H. Gholizadeh and S. Hasanpour, "A New Quadratic CUK-Based Step-Up DC/DC Converter Without Right Hand Plane Zero," International Journal of Industrial Electronics Control and Optimization, 2024, doi:10.22111/ieco.2024.48683.1565.
[8] R. Rajesh, N. Prabaharan, and E. Hossain, "Design and Analysis of a New High Step-Up Converter Using Switched-Inductor-Capacitor Voltage Multiplier Cells for Photovoltaic Application," IEEE Journal of the Electron Devices Society, 2036-2041, 2023, doi: 10.1109/TCSII.2022.3226187.
[9] S. Hasanpour, "A New Structure of Single-Switch Ultra High-Gain DC/DC Converter for Renewable Energy Applications," IEEE Trans. on Power Electron., vol. 37, no.10, pp. 12715 – 12728, May 2022, doi: 10.1109/TPEL.2022.3172311.
[10] A. Samadian, M. G. Marangalu, H. Tarzamni, S. H. Hosseini, M. Sabahi, and A. Mehrizi-Sani, "High Step-Up Common Grounded Switched Quasi Z-Source DC–DC Converter Using Coupled Inductor with Small Signal Analysis," IEEE Access, vol. 11, pp. 120516-120529, 2023, doi: 10.1109/ACCESS.2023.3327303.
[11] S. Hasanpour, Y. Siwakoti, and F. Blaabjerg, "A New Soft-Switched High Step-Up Trans-Inverse DC/DC Converter Based on Built-In Transformer," IEEE Open Journal of Power Electronics, vol. 4, pp. 381 – 394, 2023, doi: 10.1109/OJPEL.2023.3275651.
[12] L. Chen, D. Rong, and X. Sun, "A high-gain interleaved quadric DC-DC converter with dual-coupled inductors," IEICE Electronics Express, p. 21.20240408, 2024, doi: 10.1587/elex.21.20240408.
[13] M. Karimi Hajiabadi, A. Lahooti Eshkevari, A. Mosallanejad, and A. Salemnia, "Non‐isolated high step‐up DC/DC converter for low‐voltage distributed power systems based on the quadratic boost converter," International Journal of Circuit Theory and Applications, vol. 50, no. 6, pp. 1946-1964, 2022, doi: 10.1002/cta.3234.
[14] D. Yu, J. Yang, R. Xu, Z. Xia, H. H.-C. Iu, and T. Fernando, "A family of module-integrated high step-up converters with dual coupled inductors," IEEE Access, vol. 6, pp. 16256-16266, 2018, doi: 10.1109/ACCESS.2018.2815148.
[15] T. Nouri, S. Hasanpour, and S. S. Lee, "A Semi-Quadratic Trans-Inverse High Step-Up DC-DC Converter for Renewable Energy Applications," IEEE Transactions on Power Electronics, vol. 39, no. 11, 2024, DOI: 10.1109/TPEL.2024.3423666.
[16] S. Hasanpour, "A novel soft‐switching quadratic high voltage gain trans‐inverse DC/DC converter," IET Power Electronics, 2024, doi: 10.1049/pel2.12716.
[17] M. Rezaie, V. Abbasi, and T. Kerekes, "High step‐up DC–DC converter composed of quadratic boost converter and switched capacitor," IET Power Electronics, vol. 13, no. 17, pp. 4008-4018, 2020, doi: 10.1049/iet-pel.2020.0044.
[18] M. Hajilou and H. Farzanehfard, "Single Switch Ultra-High Step-Up Quadratic Converter With Low Input Current Ripple," IEEE Transactions on Industrial Electronics, 2024, doi: 10.1109/TIE.2024.3413825.
[19] S. A. Modaberi, T. G. Bolandi, M. Hassanifar, and Y. Neyshabouri, "A high step‐up single switch DC‐DC quadratic boost converter based on coupled inductor with reduced voltage stress of power components," International Journal of Circuit Theory and Applications, 1-27, 2024, doi: 10.1002/cta.4233.
[20] M. Rezayat, B. M. Dehkordi, and M. Niroomand, "Quadratic High Step-up DC-DC Converter With Passive Clamp Circuit," in 2024 11th Iranian Conference on Renewable Energy and Distribution Generation (ICREDG), 2024, vol. 11, pp. 1-8, doi: 10.1109/ICREDG61679.2024.10607817.
[21] P. Alavi, P. Mohseni, E. Babaei, and V. Marzang, "An ultra-high step-up DC–DC converter with extendable voltage gain and soft-switching capability," IEEE Trans. on Ind. Electron., vol. 67, no. 11, pp. 9238-9250, 2019, doi: 10.1109/TIE.2019.2952821.
[22] V. Abbasi, S. Rostami, S. Hemmati, and S. Ahmadian, "Ultrahigh Step-Up Quadratic Boost Converter Using Coupled Inductors With Low Voltage Stress on the Switches," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 10, pp. 7733-7743, 2022, doi:10.1109/JESTPE.2022.3195817.
[23] V. Abbasi, M. M. Kashani, M. Rezaie, and D. D.-C. Lu, "Two-Switch Ultrahigh Step-Up DC-DC Converter with Low Input Current Ripple and Low Switch Voltage Stress," IEEE Open Journal of Power Electronics, 2024, doi: 10.1109/OJPEL.2024.3432628.
[24] S. A. Modaberi, B. Allahverdinejad, and M. R. Banaei, "A quadratic high step-up DC-DC boost converter based on coupled inductor with single switch and continuous input current," in 2021 12th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC), 2021, pp. 1-6, doi: 10.1109/PEDSTC52094.2021.9405958.
[25] H. Tarzamni, N. V. Kurdkandi, H. S. Gohari, M. Lehtonen, O. Husev, and F. Blaabjerg, "Ultra-high step-up DC-DC converters based on center-tapped inductors," IEEE Access, vol. 9, pp. 136373-136383, 2021, doi:10.1109/ACCESS.2021.3117856.
[26] D. Alizadeh, E. Babaei, and M. Sabahi, "High Step-Up Quadratic Impedance Source DC-DC Converter Based on Coupled Inductor," IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022, doi:10.1109/JESTPE.2022.320703.
[27] M. Rezaie and V. Abbasi, "Ultrahigh step-up DC–DC converter composed of two stages boost converter, coupled inductor, and multiplier cell," IEEE Trans. on Ind. Electron., vol. 69, no. 6, pp. 5867-5878, 2021, doi: 10.1109/TIE.2021.3091916.
[28] S. Hasanpour and S. S. Lee, "A New Quadratic DC/DC Converter with Ultra-High Voltage Gain," IEEE Transactions on Power Electronics, vol. 39, no. 7, pp. 8800 – 8812, 2024, doi: 10.1109/TPEL.2024.3385411.
[29] H. Li, W. Chen, Y. Zhang, H. Duan, X.-F. Cheng, and D. Wang, "A novel quadratic cascaded coupled inductor high gain DC-DC converter," IEICE Electronics Express, vol. 21, no. 16, pp. 20240363-20240363, 2024, doi: 10.1587/elex.21.20240363.
[30] M. Hajilou, S. Gholami, and H. Farzanehfard, "Ultra-high Step-up Soft Switched Quadratic DC-DC Converter with Continuous Input Current and Low Switch Voltage Stress," Power Electronics, Drive Systems, and Technologies Conference (PEDSTC), 2023, pp. 1-7, doi: 10.1109/PEDSTC57673.2023.10087159.
[31] M. Izadi, A. Mosallanejad, and A. Lahooti Eshkevari, "A non‐isolated quadratic boost converter with improved gain, high efficiency, and continuous input current," IET Power Electronics, vol. 16, no. 2, pp. 193-208, 2023, doi: 10.1049/pel2.12376.
[32] L. Chen, D. Rong, and X. Sun, "A Family of High Step-up Soft-Switching Integrated Sepic Converter With Y-source Coupled Inductor," IEEE Access, 2023, DOI: 10.1109/ACCESS.2023.3322459.
[33] S. Habibi, R. Rahimi, M. Ferdowsi, and P. Shamsi, "Coupled Inductor-Based Single-Switch Quadratic High Step-Up DC–DC Converters With Reduced Voltage Stress on Switch," IEEE Journal of Emerging and Selected Topics in Ind. Electron., vol. 4, no. 2, pp. 434-446, 2022, doi: 10.1109/JESTIE.2022.3209146.
[34] A. Masoud, M. Packnezhad, and H. Farzanehfard, "A Single-Switch Ultra-High Step-Up DC-DC Converter With Low Voltage Stress Based on Quadratic Y-Sources Topology," Power Electronics, Drive Systems, and Technologies Conference (PEDSTC), pp. 1-6, 2023, doi: 10.1109/PEDSTC57673.2023.10087094.
[35] T. Jin, J. Lin, H. Li, X. Yan, Y. Weng, and X. Mao, "A Novel Three-Winding Coupled Inductor-Based High Step-up DC-DC Converter for Renewable Energy Application," IEEE Journal of Emerging and Selected Topics in Power Electronics, 2023, doi:10.1109/JESTPE.2023.3260899. =============== RESTART: D:/bahador/VOL4/No4/1/add_references.py ===============
[1] Iran Battery and Energy Storage Association.
[Online]. Available: www.isbs.ir
[2] T.-W. Noh, J.-H. Ahn, and B. K. Lee, "Cranking Capability Estimation Algorithm Based on Modeling and Online Update of Model Parameters for Li-Ion SLI Batteries," Energies, vol. 12, no. 17, p. 3365, 2019, doi: 10.3390/en12173365
[3] H. Rahimi-Eichi, U. Ojha, F. Baronti, and M.-Y. Chow, "Battery management system: An overview of its application in the smart grid and electric vehicles," IEEE Ind. Electron. Mag., vol. 7, no. 2, pp. 4-16, 2013, doi: 10.1109/MIE.2013.2250351.
[4] K. W. E. Cheng, B. Divakar, H. Wu, K. Ding, and H. F. Ho, "Battery-management system (BMS) and SOC development for electrical vehicles," IEEE Trans. Veh. Technol., vol. 60, no. 1, pp. 76-88, 2011, doi: 10.1109/TVT.2010.2089647.
[5] B. Balasingam, M. Ahmed, and K. Pattipati, "Battery management systems Challenges and some solutions," Energies, vol. 13, no. 11, p. 2825, 2020, doi: 10.3390/en13112825.
[6] R. R. Kumar, C. Bharatiraja, K. Udhayakumar, S. Devakirubakaran, K. S. Sekar and L. Mihet-Popa, "Advances in Batteries, Battery Modeling, Battery Management System, Battery Thermal Management, SOC, SOH, and Charge/Discharge Characteristics in EV Applications," IEEE Access, vol. 11, pp. 105761-105809, 2023, doi: 10.1109/ACCESS.2023.3318121.
[7] J. E. M. Abasi, S. Bagheri, M. Mohseni, A. N. Kumlah, and M. Joorabian, "Unit commitment planning under uncertainty and fuel cost volatility with economical and emission reduction objective," Technovations of Electr. Eng. Green Energy Syst., vol. 4, no. 1, pp. 67-84, 2025, doi: 10.30486/TEEGES.2025.1120474.
[8] N. K. M. Mohseni, J. Ebrahimi, M. Abasi, and M. Joorabian, "Optimal planning model for electric vehicle fast charging stations in a low-polluting distribution network to improve technical and economic parameters," Technovations of Electr. Eng. Green Energy Syst., vol. 3, no. 4, pp. 67-84, 2025, doi: 10.30486/TEEGES.2024.1105498.
[9] J. Halderman, Automotive Electricity and Electronics, 6th ed., Pearson, 2021.
[10] G. Tim, Automotive Service: Inspection, Maintenance, Repair, Delmar, New York, 2012.
[11] Y. Tao, J. Qiu, S. Lai, X. Sun, and J. Zhao, "Adaptive integrated planning of electricity networks and fast charging stations under electric vehicle diffusion," IEEE Trans. Power Syst., vol. 38, no. 1, pp. 499-513, 2022, doi: 10.1109/TPWRS.2022.3167666.
[12] S. Singh, V. More and R. Batheri, "Driving electric vehicles into the future with battery management systems," IEEE Engineering Management Review, vol. 50, no. 3, pp. 157-161, Sept. 2022, doi: 10.1109/EMR.2022.3194655.
[13] S. Li, P. Zhao, C. Gu, J. Li, D. Huo and S. Cheng, "Aging mitigation for battery energy storage system in electric vehicles," IEEE Transactions on Smart Grid, vol. 14, no. 3, pp. 2152-2163, May 2023, doi: 10.1109/TSG.2022.3210041.
[14] S. Jafari and Y. -C. Byun, "Prediction of the battery state using the digital twin framework based on the battery management system," IEEE Access, vol. 10, pp. 124685-124696, 2022, doi: 10.1109/ACCESS.2022.3225093.