بهبود ظرفیت میزبانی از منابع PV-STATCOM با مدیریت بهینه ذخیره¬ساز انرژی و در نظر گرفتن برنامه پاسخگویی بار
محورهای موضوعی : مهندسی برق و کامپیوترفرزین فردین فر 1 , مصطفی جعفری کرمانی پور 2
1 - دانشکده مهندسي برق، دانشگاه شهید باهنر، کرمان، ايران
2 - دانشکده مهندسي برق، دانشگاه ملی مهارت، تهران، ايران
کلید واژه: ظرفیت میزبانی, برنامه پاسخگویی بار, الگوریتم بهینه¬سازی آکیولا, روش نمونه¬برداری ابرمکعب لاتین, جبران¬ساز سنکرون استاتیکی خورشیدی,
چکیده مقاله :
در سالیان اخیر به دلیل افزایش نرخ نفوذ سیستمهای فتوولتائیک (PV)در شبکههای توزیع، چالشهای فنی زیادی بهوجود آمده است. یکی از پیامدهای مخرب ناشی از نصب زیاد سیستمهای PV، اضافهولتاژ در برخی از ساعات روز است که این عامل باعث کاهش ظرفیت میزبانی(HC) شبکه از منابع فتوولتائیک میشود. نوآوری این مقاله اجرای یکپارچه برنامهپاسخگویی بار، استفاده از ذخیرهسازهای انرژی و اینورترهای هوشمند سیستمهای فتوولتائیک به عنوان جبرانکننده سنکرون استاتیکی (PV-STATCOM) میباشد که از آنها برای بهبود ظرفیت میزبانی استفاده شده است. در این راستا، مدیریت مناسب ذخیرهساز انرژی، کنترل توان راکتیو مبادله شده با شبکه توسط PV-STATCOM به منظور بهینهسازی تابع هدف شامل بیشینهسازی ظرفیت میزبانی، کمینهسازی تلفات، انحراف ولتاژ و هزینههای بهرهبرداری صورت گرفته است. همچنین جهت واقعی شدن محاسبات و شبیهسازیهای انجام شده از توابع احتمالاتی برای مدلسازی عدم قطعیت بار در شبکه توزیع نیز استفاده شده است. مدلسازی عدم قطعیت انجام شده در این مقاله، نمونه برداری به روش ابر مکعب لاتین (LHS) است که سرعت و همپوشانی نمونهبرداری بهتری نسبت به روش مونت کارلو دارد. برای حل مساله بهینه سازی تابع هدف، از الگوریتم بهینهسازی عقاب آکیولا (AO) استفاده شده و نتایج بدست آمده با الگوریتمهای تجمعی ذرات (PSO) و ژنتیک (GA) مقایسه شدهاند. شبیهسازی روش پیشنهادی بر روی شبکه تست 15 باسه IEEE، تاثیرگذاری آن بر افزایش ظرفیت میزبانی تا 39 درصد را ضمن رعایت حدود مجاز تغییرات ولتاژ و بهبود تلفات و هزینه بهرهبرداری، نشان میدهد.
In recent years, due to the increasing penetration of photovoltaic (PV) systems in distribution networks, there are several technical challenges. One of the destructive consequences of extra PV system installation is voltage raising in some hours of the day, which reduces Hosting Capacity (HC) of the grid. The innovation of this paper is the integrated implementation of the demand response program, utilization of energy storages and smart inverters as static synchronous compensation (PV-STATCOM), which they are used for improving Hosting Capacity. In this regard, proper energy storage management, reactive power control by PV-STATCOM in order to optimize the objective function include maximizing the Host Capacity, minimization of losses, voltage deviation and operation cost. Also, the real computations are performed by using probabilistic functions to model the load uncertainty in distribution network. The uncertainty quantification model in this paper is Latin Hypercube Sampling (LHS) method, which has better speed calculation and sampling compare to Monte Carlo method. To solve the optimization problem of objective function, the optimization algorithm of Aqiula Optimizer (AO) is used and the results are compared with Particle Swarm Optimization (PSO) and Genetic Algorithm (GA). The proposed method is based on IEEE 15-bus test system and shows its effectiveness on increasing Hosting Capacity up to 39 % while respecting to the limits of voltage variation and improvement of losses and costs.
[1] M. Zain ul Abideen, O. Ellabban, and L. Al-Fagih, "A review of the tools and methods for distribution networks’ hosting capacity calculation," Energies, vol. 13, no. 11, p. 2758, 2020, doi: 10.3390/en13112758.
[2] N. Etherden and M. H. Bollen, "Increasing the hosting capacity of distribution networks by curtailment of renewable energy resources," in 2011 IEEE Trondheim PowerTech, 2011: IEEE, pp. 1-7, doi: 10.1109/PTC.2011.6019292.
[3] N. Etherden and M. H. Bollen, "Increasing the hosting capacity of distribution networks by curtailment of renewable energy resources," in 2011 IEEE Trondheim PowerTech, 2011: IEEE, pp. 1-7, doi: 10.1109/PTC.2011.6019292.
[4] B. Azibek, A. Abukhan, H. K. Nunna, B. Mukatov, S. Kamalasadan, and S. Doolla, "Hosting capacity enhancement in low voltage distribution networks: Challenges and solutions," in 2020 IEEE International Conference on Power Electronics, Smart Grid and Renewable Energy (PESGRE2020), 2020: IEEE, pp. 1-6, doi: 10.1109/PESGRE45664.2020.9070466.
[5] F. Capitanescu, L. F. Ochoa, H. Margossian, and N. D. Hatziargyriou, "Assessing the potential of network reconfiguration to improve distributed generation hosting capacity in active distribution systems," IEEE Transactions on Power Systems, vol. 30, no. 1, pp. 346-356, 2014, doi: 10.1109/TPWRS.2014.2320895.
[6] B. Wang, C. Zhang, Z. Y. Dong, and X. Li, "Improving hosting capacity of unbalanced distribution networks via robust allocation of battery energy storage systems," IEEE Transactions on Power Systems, vol. 36, no. 3, pp. 2174-2185, 2020, doi: 10.1109/TPWRS.2020.3029532.
[7] A. Rabiee and S. M. Mohseni-Bonab, "Maximizing hosting capacity of renewable energy sources in distribution networks: A multi-objective and scenario-based approach," Energy, vol. 120, pp. 417-430, 2017, doi: 10.1016/j.energy.2016.11.095.
[8] X. Cao, T. Cao, F. Gao, and X. Guan, "Risk-averse storage planning for improving RES hosting capacity under uncertain siting choices," IEEE transactions on sustainable energy, vol. 12, no. 4, pp. 1984-1995, 2021, doi: 10.1109/TSTE.2021.3075615.
[9] M. Aragüés‐Peñalba, A. Egea Alvarez, S. Galceran Arellano, and O. Gomis‐Bellmunt, "Optimal power flow tool for mixed high‐voltage alternating current and high‐voltage direct current systems for grid integration of large wind power plants," IET Renewable Power Generation, vol. 9, no. 8, pp. 876-881, 2015, doi: 10.1049/iet-rpg.2015.0028.
[10] S. Dierkes, "Increasing the hosting capacity of RES in distribution grids by active power control," in International ETG Congress-Die Energiewende-Blueprints for the new energy age, 2015.
[11] R. Fachrizal, U. H. Ramadhani, J. Munkhammar, and J. Widén, "Combined PV–EV hosting capacity assessment for a residential LV distribution grid with smart EV charging and PV curtailment," Sustainable Energy, Grids and Networks, vol. 26, p. 100445, 2021, doi: 10.1016/j.segan.2021.100445.
[12] X. Xu, Z. Xu, J. Li, J. Zhao, and L. Xue, "Optimal placement of voltage regulators for photovoltaic hosting capacity maximization," in 2018 IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia), 2018: IEEE, pp. 1278-1282, doi: 10.1109/ISGT-Asia.2018.8467940.
[13] K.-S. Ryu et al., "Mpc based energy management system for hosting capacity of pvs and customer load with ev in stand-alone microgrids," Energies, vol. 14, no. 13, p. 4041, 2021, doi: 10.3390/en14134041.
[14] T. Gush, C.-H. Kim, S. Admasie, J.-S. Kim, and J.-S. Song, "Optimal smart inverter control for PV and BESS to improve PV hosting capacity of distribution networks using slime mould algorithm," IEEE Access, vol. 9, pp. 52164-52176, 2021, doi: 10.1109/ACCESS.2021.3070155.
[15] L. Collins and J. Ward, "Real and reactive power control of distributed PV inverters for overvoltage prevention and increased renewable generation hosting capacity," Renewable Energy, vol. 81, pp. 464-471, 2015, doi: 10.1016/j.renene.2015.03.012.
[16] Y.-J. Son, S.-H. Lim, S.-G. Yoon, and P. P. Khargonekar, "Residential demand response-based load-shifting scheme to increase hosting capacity in distribution system," IEEE Access, vol. 10, pp. 18544-18556, 2022, doi: 10.1109/ACCESS.2022.3151172.
[17] H. Hwang, A. Yoon, Y. Yoon, and S. Moon, "Demand response of HVAC systems for hosting capacity improvement in distribution networks: A comprehensive review and case study," Renewable and Sustainable Energy Reviews, vol. 187, p. 113751, 2023, doi: 10.1016/j.rser.2023.113751.
[18] L. Abualigah, D. Yousri, M. Abd Elaziz, A. A. Ewees, M. A. Al-Qaness, and A. H. Gandomi, "Aquila optimizer: a novel meta-heuristic optimization algorithm," Computers & Industrial Engineering, vol. 157, p. 107250, 2021, doi: 10.1016/j.cie.2021.107250.
[19] M. H. Ali, A. T. Salawudeen, S. Kamel, H. B. Salau, M. Habil, and M. Shouran, "Single-and multi-objective modified aquila optimizer for optimal multiple renewable energy resources in distribution network," Mathematics, vol. 10, no. 12, p. 2129, 2022, doi: 10.3390/math10122129.
[20] C. Han, D. Lee, S. Song, and G. Jang, "Probabilistic assessment of PV hosting capacity under coordinated voltage regulation in unbalanced active distribution networks," IEEE Access, vol. 10, pp. 35578-35588, 2022, doi: 10.1109/ACCESS.2022.3163595.
[21] N. F. Avila and C.-C. Chu, "Distributed probabilistic ATC assessment by optimality conditions decomposition and LHS considering intermittent wind power generation," IEEE Transactions on Sustainable Energy, vol. 10, no. 1, pp. 375-385, 2018, doi: 10.1109/TSTE.2018.2796102.
[22] F. Fardinfar and M. J. K. Pour, "Optimal placement of D-STATCOM and PV solar in distribution system using probabilistic load models," in 2023 10th Iranian Conference on Renewable Energy & Distributed Generation (ICREDG), 2023: IEEE, pp. 1-5, doi: 10.1109/ICREDG58341.2023.10091990.
[23] M. P. Moghaddam, A. Abdollahi, and M. Rashidinejad, "Flexible demand response programs modeling in competitive electricity markets," Applied Energy, vol. 88, no. 9, pp. 3257-3269, 2011, doi: 10.1016/j.apenergy.2011.02.039.