ارایه طرح حفاظتی پایلوت جدید برای خطوط انتقال در شبکه های انرژی سبز دارای منابع تجدیدپذیر انرژی از نوع توربین بادی
محورهای موضوعی : مهندسی برق قدرت
1 - دانشکده مهندسی برق، دانشگاه صنعتی سهند تبریز، تبریز، ایران
2 - دانشکده مهندسی برق، دانشگاه صنعتی سهند تبریز، تبریز، ایران
کلید واژه: خطوط انتقال, تداخل بار, رله دیستانس, توربین بادی, امپدانس پایلوت,
چکیده مقاله :
خطوط انتقال نقش حیاتی در سیستمهای قدرت دارد زیرا مسیری برای انتقال توان بین تولیدکننده و مصرفکننده را تامین میکند. احتمال وقوع خطا در خطوط انتقال بخصوص در حضور تولیدات پراکنده بسیار بالا است. امروزه وجود منابع تولیدات پراکنده علاوه بر مزایایی که دارد باعث تغییراتی در رفتار بخشهای مختلف سیستمهای قدرت از جمله سیستم حفاظتی شده است. این تغییرات شامل افزایش سطح جریان اتصال کوتاه و عملکرد نادرست زون 3 رله دیستانس در هنگام تداخل بار می¬شود. در این مقاله با استفاده از مولفههای توالی مثبت، منفی و صفر فازور ولتاژ و جریان دو باس ابتدا و انتهای خطوط، الگوریتم جدیدی مبتنی بر امپدانس پایلوت در حضور تولیدات پراکنده از نوع توربین بادی ارایه شده است که توان هر کدام از توربینهای بادی 5/2 مگاوات است. این الگوریتم در سیستم 39 باسه IEEE در نرمافزار DIgSILENT آزمایش شده است. امپدانس پایلوت مذکور معیار تشخیص خطا را در برابر انواع خطا، مکان وقوع خطا، تداخل بار و نوسان توان تعیین میکند.
Transmission lines play a critical role in power systems as they provide the pathway for transferring the power from the generation to the consumption. The probability of faults occurring in transmission lines, especially in the presence of distributed generations (DGs), is significantly high. Nowadays, the presence of DG sources, in addition to the advantages it has, also causes changes in the behavior of various parts of power systems, including the protection system. These changes include increased short-circuit current levels and incorrect operation of the zone 3 of the distance relay during load interferences. This paper presents a new pilot impedance-based algorithm using positive, negative, and zero sequences components of the phasors of the voltage and the current of the two buses located at the beginning and the end of lines in the presence of wind turbines with a production capacity of 2.5 MW. This algorithm has been tested on the IEEE 39-bus test system in the DIgSILENT software. The said pilot impedance determines the fault detection criteria against all types of faults, the location of faults, load interferences and power swings.
S. Horowitz and A. Phadke, "Third zone revisited," IEEE Transactions on power delivery, vol. 21, no. 1, pp. 23-29, 2005. doi: 10.1109/TPWRD.2005.860244.
[2] V. Rampurkar, P. Pentayya, H. A. Mangalvedekar, and F. Kazi, "Cascading failure analysis for Indian power grid," IEEE Transactions on Smart Grid, vol. 7, no. 4, pp. 1951-1960, 2016. doi: 10.1109/TSG.2016.2530679.
[3] R. Yao, S. Huang, K. Sun, F. Liu, X. Zhang, and S. Mei, "A multi-timescale quasi-dynamic model for simulation of cascading outages," IEEE Transactions on Power Systems, vol. 31, no. 4, pp. 3189-32, 2015. doi: 10.1109/TPWRS.2015.2466116.
[4] A. G. Phadke and B. Kasztenny, "Synchronized phasor and frequency measurement under transient conditions," IEEE transactions on power delivery, vol. 24, no. 1, pp. 89-95, 2008. doi: 10.1109/TPWRD.2008.2002665.
[5] J. Zare, F. Aminifar, and M. Sanaye-Pasand, "Synchrophasor-based wide-area backup protection scheme with data requirement analysis," IEEE Transactions on Power Delivery, vol. 30, no. 3, pp. 1410-1419, 2014. doi: 10.1109/TPWRD.2014.2377202.
[6] J. De La Ree, V. Centeno, J. S. Thorp, and A. G. Phadke, "Synchronized phasor measurement applications in power systems," IEEE Transactions on smart grid, vol. 1, no. 1, pp. 20-27, 2010. doi: 10.1109/TSG.2010.2044815.
[7] P. K. Nayak, A. K. Pradhan, and P. Bajpai, "Wide-area measurement-based backup protection for power network with series compensation," IEEE Transactions on Power Delivery, vol. 29, no. 4, pp. 1970-1977, 2014. doi: 10.1109/TPWRD.2013.2294183.
[8] M. Chen, H. Wang, S. Shen, and B. He, "Research on a distance relay-based wide-area backup protection algorithm for transmission lines," IEEE Transactions on Power Delivery, vol. 32, no. 1, pp. 97-105, 2016. doi: 10.1109/TPWRD.2016.2599198.
[9] P. Kundu and A. K. Pradhan, "Online identification of protection element failure using wide area measurements," IET Generation, Transmission & Distribution, vol. 9, no. 2, pp. 115-123, 2015. doi: 10.1049/iet-gtd.2014.0276.
[10] M. Eissa, M. E. Masoud, and M. M. M. Elanwar, "A novel back up wide area protection technique for power transmission grids using phasor measurement unit," IEEE Transactions on Power Delivery, vol. 25, no. 1, pp. 270-278, 2009. doi: 10.1109/TPWRD.2009.2035394.
[11] Z. He, Z. Zhang, W. Chen, O. P. Malik, and X. Yin, "Wide-area backup protection algorithm based on fault component voltage distribution," IEEE Transactions on Power Delivery, vol. 26, no. 4, pp. 2752-2760, 2011. doi: 10.1109/TPWRD.2011.2165971.
[12] S. K. Mohanty, P. K. Nayak, P. K. Bera, and H. H. Alhelou, "An enhanced protective relaying scheme for TCSC compensated line connecting DFIG-Based wind farm," IEEE Transactions on Industrial Informatics, 2023. doi: 10.1109/TII.2023.3306575.
[13] Z. Ali et al., "Fault management in DC microgrids: A review of challenges, countermeasures, and future research trends," IEEE Access, vol. 9, pp. 128032-128034, 2021. doi: 10.1109/ACCESS.2021.3112383.
[14] J. Ma, C. Liu, and J. S. Thorp, "A wide-area backup protection algorithm based on distance protection fitting factor," IEEE Transactions on Power Delivery, vol. 31, no. 5, pp. 2196-2205, 2015. doi: 10.1109/TPWRD.2015.2504128.
[15] Z. Li, X. Yin, Z. Zhang, and Z. He, "Wide-area protection fault identification algorithm based on multi-information fusion," IEEE Transactions on Power Delivery, vol. 28, no. 3, pp. 1348-1355, 2013. doi: 10.1109/TPWRD.2013.2247638.
[16] X. Tong, X. Wang, and K. M. Hopkinson, "The modeling and verification of peer-to-peer negotiating multiagent colored petri nets for wide-area backup protection," IEEE Transactions on Power Delivery, vol. 24, no. 1, pp. 61-72, 2008. doi: 10.1109/TPWRD.2008.2005661.
[17] A. Sharafi, M. Sanaye-Pasand, and F. Aminifar, "Transmission system wide-area back-up protection using current phasor measurements," International Journal of Electrical Power & Energy Systems, vol. 92, pp. 93-103, 2017. doi: 10.1016/j.ijepes.2017.04.014.
[18] Z. Yining and S. Jiale, "Phaselet-based current differential protection scheme based on transient capacitive current compensation," IET generation, transmission & distribution, vol. 2, no. 4, pp. 469-477, 2008. doi: 10.1049/iet-gtd:20070494.
[19] R. Kumar, S. Anand, and S. Parida, "A protection approach of AC transmission lines utilizing positive-sequence fault components," Electric Power Systems Research, vol. 233, p. 110-490, 2024. doi: 10.1016/j.epsr.2024.110490.
[20] Y. Serizawa et al., "Wide-area current differential backup protection employing broadband communications and time transfer systems," IEEE Transactions on Power Delivery, vol. 13, no. 4, pp. 1046-1052, 1998. doi: 10.1109/61.714445.
[21] J. Suonan, X. Deng, and K. Liu, "Transmission line pilot protection principle based on integrated impedance," IET generation, transmission & distribution, vol. 5, no. 10, pp. 1003-1010, 2011. doi: 10.1049/iet-gtd.2011.0224.
[22] S. He, J. Suonan, and Z. Bo, "Integrated impedance-based pilot protection scheme for the TCSC-compensated EHV/UHV transmission lines," IEEE Transactions on Power Delivery, vol. 28, no. 2, pp. 835-844, 2013. doi: 10.1109/TPWRD.2012.2236849 .
[23] M. K. Jena, S. Samantaray, and B. K. Panigrahi, "A new wide-area backup protection scheme for series-compensated transmission system," IEEE Systems Journal, vol. 11, no. 3, pp. 1877-1887, 2015. doi: 10.1109/JSYST.2015.2467218.
[24] J. Xia, S. Jiale, X. Deng, L. Wang, S. He, and K. Liu, "Enhanced transmission line pilot impedance and pilot protection," IET generation, transmission & distribution, vol. 5, no. 12, pp. 1240-1249, 2011. doi: 10.1049/iet-gtd.2010.0628.
[25] T. G. Bolandi, H. Seyedi, S. M. Hashemi, and P. S. Nezhad, "Impedance-differential protection: A new approach to transmission-line pilot protection," IEEE Transactions on Power Delivery, vol. 30, no. 6, pp. 2510-2518, 2015. doi: 10.1109/TPWRD.2014.2387689.
[26] S. Gangolu, P. Raja, M. Selvan, and V. K. Murali, "Effective algorithm for fault discrimination and estimation of fault location in transmission lines," IET Generation, Transmission & Distribution, vol. 13, no. 13, pp. 2789-2798, 2019. doi: 10.1049/iet-gtd.2018.5815.
[27] G. Manassero and R. R. Tiferes, "Dynamic time warping based pilot protection algorithm for ac and hvdc transmission lines," IEEE Access, vol. 11, pp. 56846-56857, 2023. doi: 10.1109/ACCESS.2023.3281500.
[28] T. Spielböck and A. Beláň, "Design of a one-sided, impedance-based transmission line fault locator using line topology and source impedances," Electric Power Systems Research, vol. 161, pp. 123-138, 2018. doi: 10.1016/j.epsr.2018.03.013.
[29] K. Chen, J. Hu, and J. He, "Detection and classification of transmission line faults based on unsupervised feature learning and convolutional sparse autoencoder," IEEE Transactions on Smart Grid, vol. 9, no. 3, pp. 1748-1758, 2016. doi: 10.1109/TSG.2016.2598881.
[30] M. Khoshbouy, A. Yazdaninejadi, and T. G. Bolandi, "Transmission line adaptive protection scheme: A new fault detection approach based on pilot superimposed impedance," International Journal of Electrical Power & Energy Systems, vol. 137, p. 107826, 2022. doi: 10.1016/j.ijepes.2021.107826.
[31] N. Ahmed, A. A. Hashmani, S. Khokhar, M. A. Tunio, and M. Faheem, "Fault detection through discrete wavelet transform in overhead power transmission lines," Energy Science & Engineering, vol. 11, no. 11, pp. 4181-4197, 2023. doi: 10.1002/ese3.1573.