مدیریت بهينه انرژی در شبکه توزيع شعاعی با درنظرگرفتن ریزشبکههای چندگانه، عدم قطعیتها و شاخص تاب¬آوری با ¬استفاده از الگوریتم بهینه¬سازی شاهین هریس بهبودیافته
محورهای موضوعی : مهندسی برق قدرتمرضیه پشت یافته 1 , حسن براتی 2 * , علی درویش فالحی 3
1 - گروه برق، واحد دزفول، دانشگاه آزاد اسلامی، دزفول، ايران
2 - گروه برق، واحد دزفول، دانشگاه آزاد اسلامی، دزفول، ايران
3 - گروه برق، واحد شادگان، دانشگاه آزاد اسلامی، شادگان، ايران
کلید واژه: ریزشبکه¬های چندگانه, عدم قطعیت¬ها, الگوريتم شاهين هريس, تاب¬آوری, بازآرایی,
چکیده مقاله :
در این مقاله، یک مدیریت بهينه انرژی برای یک ریزشبکه چندگانه (MMG) متصل به شبکهی توزیع (DN) پيشنهاد شده است. در اين بهينهسازي توابع هدف مختلفي در نظر گرفته شده است شامل: هزینه شبکه، کاهش آلایندهها و تلفات، و تابآوري شبکه توزیع. همچنین، در اين مقاله تأثیر جایابی منابع توليدات پراکنده توأم با بازآرایی شبکه توزیع در فرآیند بهینهسازی و با هدف کاهش تلفات، افزایش قابلیت اطمینان و تابآوری در نظر گرفته شدهاند. عدم قطعیت موجود در منابع تجديدپذير و مصرفکنندهها با استفاده از روش تئوری تصمیمگیری شکاف اطلاعاتی (IGDT) فرمولبندی شده است. متغیرهای تصمیمگیری شامل مکان منابع و ریزشبکهها، ظرفیت نصب و ضریب قدرت و شعاع عدم قطعیت با استفاده ااز الگوریتم فراابتکاری بهبودیافته شاهین هریس (MHHO) و حلکننده CPLEX بصورت بهینه تعیین شده است. در الگوریتم MHHO، پارامتر انرژی خرگوش (E) با رفتار و مقدار تابع هدف، بهطور دینامیکی تغییر نماید. روش پيشنهادي بر روي شبکه توزیع 33 شینه IEEE در مرحله اول در افق زمانی 24 ساعته شامل سه ريزشبکه با منابع مختلف انرژي تجديدپذير به جهت تعیین ساختار شبکه از بابت شینهای اتصال ریزشبکهها و منابع پراکنده توسط الگوریتم جایابی و در مرحله بعد در زمان های مختلف شاخص تابآوری بر اثر قطع ارتباط شبکه توزیع با شبکه بالادست بررسی میگردد. نتايج حاصل از شبیهسازی بیانگر عملکرد مطلوب الگوریتمMHHO در جایابی ریزشبکهها، منابع تولید پراکنده و بازآرایی شبکه جهت بهبود مدیریت بهینه انرژی و شاخص تابآوری میباشد.
This paper proposes optimal energy management for multiple microgrids (MMG) connected to a distribution network (DN), in which various objective functions including network cost, pollutant reduction and losses, and distribution network resilience are considered. Also, the effect of the placement of distributed generation sources and the distribution network's reconfiguration in the optimization process to reduce losses, increasing reliability and resilience are considered. Uncertainties are formulated using Information Gap Decision Theory (IGDT). The decision variables, including the location of resources and microgrids, installation capacity, power factor, and uncertainty radius, have been optimally determined using the Modified Harris Hawk Optimization algorithm (MHHO) and the CPLEX solver. In the MHHO algorithm, the rabbit energy parameter (E) changes dynamically with the behavior and value of the objective function. Finally, the proposed method on the IEEE 33-bus Radial Distribution System in the first stage in a 24-hour time horizon including three micro-grids with different renewable energy sources to determine the structure of the network due to the buses connecting micro-grids and scattered sources by the placement algorithm and in the next stage in time Different resilience indicators are investigated due to the disconnection of the distribution network with the upstream network. The simulation results show the MHHO algorithm's optimal performance in placing microgrids, distributed generation sources, and network reconfiguration to improve the optimal energy management and resilience index.
[1] H. Farzin, M. Fotuhi-Firuzabad, and M. Moeini-Aghtaie, “Enhancing Power System Resilience Through Hierarchical Outage Management in Multi-Microgrids,” IEEE Transactions on Smart Grid, vol. 7, no. 6, pp. 2869–2879, Nov. 2016, doi: 10.1109/TSG.2016.2558628.
[2] M. Haghshenas, R. Hooshmand, M. Gholipoor, “Stochastic planning to improve the resilience of electric power distribution systems against severe dust storms,” Iranian Journal of Electrical and Computer Engineering, vol. 20, no. 2, pp. 108–120, 2022, DOR: 20.1001.1.16823745.1401.20.2.12.8.
[3] J. Wang, N. Xie, W. Wu, D. Han, C. Wang, and B. Zhu, “Resilience enhancement strategy using microgrids in distribution network,” Global Energy Interconnection, vol. 1, no. 5, pp. 537–543, Dec. 2018, doi: 10.14171/J.2096-5117.GEI.2018.05.002.
[4] Y. Bian and Z. Bie, “Multi-Microgrids for Enhancing Power System Resilience in Response to the Increasingly Frequent Natural Hazards,” IFAC-PapersOnLine, vol. 51, no. 28, pp. 61–66, Jan. 2018, doi: 10.1016/J.IFACOL.2018.11.678.
[5] Z. Li, M. Shahidehpour, F. Aminifar, A. Alabdulwahab, and Y. Al-Turki, “Networked Microgrids for Enhancing the Power System Resilience,” Proceedings of the IEEE, vol. 105, no. 7, pp. 1289–1310, Jul. 2017, doi: 10.1109/JPROC.2017.2685558.
[6] H. Karimi and S. Jadid, “Optimal energy management for multi-microgrid considering demand response programs: A stochastic multi-objective framework,” Energy, vol. 195, p. 116992, Mar. 2020, doi: 10.1016/J.ENERGY.2020.116992.
[7] C. Chen, J. Wang, F. Qiu, and D. Zhao, “Resilient Distribution System by Microgrids Formation after Natural Disasters,” IEEE Transactions on Smart Grid, vol. 7, no. 2, pp. 958–966, Mar. 2016, doi: 10.1109/TSG.2015.2429653.
[8] S. Yao, P. Wang, and T. Zhao, “Transportable Energy Storage for More Resilient Distribution Systems with Multiple Microgrids,” IEEE Transactions on Smart Grid, vol. 10, no. 3, pp. 3331–3341, May 2019, doi: 10.1109/TSG.2018.2824820.
[9] P. Srikantha and D. Kundur, “Resilient distributed real-time demand response via population games,” IEEE Transactions on Smart Grid, vol. 8, no. 6, pp. 2532–2543, Nov. 2017, doi: 10.1109/TSG.2016.2526651.
[10] K. P. Schneider, F. K. Tuffner, M. A. Elizondo, C. C. Liu, Y. Xu, and D. Ton, “Evaluating the Feasibility to Use Microgrids as a Resiliency Resource,” IEEE Transactions on Smart Grid, vol. 8, no. 2, pp. 687–696, Mar. 2017, doi: 10.1109/TSG.2015.2494867.
[11] J. Chen and Q. Zhu, “A Game-Theoretic Framework for Resilient and Distributed Generation Control of Renewable Energies in Microgrids,” IEEE Transactions on Smart Grid, vol. 8, no. 1, pp. 285–295, Jan. 2017, doi: 10.1109/TSG.2016.2598771.
[12] S. Chanda and A. K. Srivastava, “Defining and Enabling Resiliency of Electric Distribution Systems with Multiple Microgrids,” IEEE Transactions on Smart Grid, vol. 7, no. 6, pp. 2859–2868, Nov. 2016, doi: 10.1109/TSG.2016.2561303.
[13] A. Hussain, V. H. Bui, and H. M. Kim, “Optimal operation of hybrid microgrids for enhancing resiliency considering feasible islanding and survivability,” IET Renewable Power Generation, vol. 11, no. 6, pp. 846–857, May 2017, doi: 10.1049/IET-RPG.2016.0820.
[14] A. Gholami, T. Shekari, and S. Grijalva, “Proactive Management of Microgrids for Resiliency Enhancement: An Adaptive Robust Approach,” IEEE Transactions on Sustainable Energy, vol. 10, no. 1, pp. 470–480, Jan. 2019, doi: 10.1109/TSTE.2017.2740433.
[15] A. Barnes, H. Nagarajany, E. Yamangily, R. Bent, and S. Backhaus, “Tools for Improving Resilience of Electric Distribution Systems with Networked Microgrids”, Center for Nonlinear Studies, Los Alamos National Laboratory, NM, USA, 2017. doi: 10.48550/arXiv.1705.08229
[16] K. P. Schneider, F. K.Tuffner, M. A. Elizondo, C. C. Liu, S. Backhaus, and D.Ton, ., “Enabling resiliency operations across multiple microgrids with grid friendly appliance controllers,” IEEE Transactions on Smart Grid, vol. 9, no. 5, pp. 4755–4764, Sep. 2018, doi: 10.1109/TSG.2017.2669642.
[17] L. Che, M. Khodayar, and M. Shahidehpour, “Only connect: Microgrids for distribution system restoration,” IEEE Power and Energy Magazine, vol. 12, no. 1, pp. 70–81, Jan. 2014, doi: 10.1109/MPE.2013.2286317.
[18] A. Gholami, T. Shekari, F. Aminifar, and M. Shahidehpour, “Microgrid Scheduling with Uncertainty: The Quest for Resilience,” IEEE Transactions on Smart Grid, vol. 7, no. 6, pp. 2849–2858, Nov. 2016, doi: 10.1109/TSG.2016.2598802.
[19] W. Yuan, J. Wang, F. Qiu, C. Chen, C. Kang, and B. Zeng, “Robust Optimization-Based Resilient Distribution Network Planning Against Natural Disasters,” IEEE Transactions on Smart Grid, vol. 7, no. 6, pp. 2817–2826, Nov. 2016, doi: 10.1109/TSG.2015.2513048.
[20] C. Gouveia, J. Moreira, C. L. Moreira, and J. A. Pecas Lopes, “Coordinating storage and demand response for microgrid emergency operation,” IEEE Transactions on Smart Grid, vol. 4, no. 4, pp. 1898–1908, Dec. 2013, doi: 10.1109/TSG.2013.2257895.
[21] Y. Wang, C. Chen, J. Wang, and R. Baldick, “Research on Resilience of Power Systems under Natural Disasters - A Review,” IEEE Transactions on Power Systems, vol. 31, no. 2, pp. 1604–1613, Mar. 2016, doi: 10.1109/TPWRS.2015.2429656.
[22] Z. Wang and J. Wang, “Self-Healing Resilient Distribution Systems Based on Sectionalization into Microgrids,” IEEE Transactions on Power Systems, vol. 30, no. 6, pp. 3139–3149, Nov. 2015, doi: 10.1109/TPWRS.2015.2389753.
[23] F. H. Aghdam, S. Ghaemi, and N. T. Kalantari, “Evaluation of loss minimization on the energy management of multi-microgrid based smart distribution network in the presence of emission constraints and clean productions,” Journal of Cleaner Production, vol. 196, pp. 185–201, Sep. 2018, doi: 10.1016/J.JCLEPRO.2018.06.023.
[24] M. Choobineh and S. Mohagheghi, “Robust optimal energy pricing and dispatch for a multi-microgrid industrial park operating based on just-in-time strategy,” IEEE Transactions on Industry Applications, vol. 55, no. 4, pp. 3321–3330, Jul. 2019, doi: 10.1109/TIA.2019.2903182.
[25] Z. Wang, B. Chen, J. Wang, and J. Kim, “Decentralized Energy Management System for Networked Microgrids in Grid-Connected and Islanded Modes,” IEEE Transactions on Smart Grid, vol. 7, no. 2, pp. 1097–1105, Mar. 2016, doi: 10.1109/TSG.2015.2427371.
[26] Q. Jiang, M. Xue, and G. Geng, “Energy management of microgrid in grid-connected and stand-alone modes,” IEEE Transactions on Power Systems, vol. 28, no. 3, pp. 3380–3389, 2013, doi: 10.1109/TPWRS.2013.2244104.
[27] S. A. Arefifar, M. Ordonez, and Y. A. R. I. Mohamed, “Energy Management in Multi-Microgrid Systems - Development and Assessment,” IEEE Transactions on Power Systems, vol. 32, no. 2, pp. 910–922, Mar. 2017, doi: 10.1109/TPWRS.2016.2568858.
[28] A. Rezaee Jordehi, S. A. Mansouri, M. Tostado-Véliz, A. Ahmarinejad, and F. Jurado, “Resilience-oriented placement of multi-carrier microgrids in power systems with switchable transmission lines,” International Journal of Hydrogen Energy, vol. 50, pp. 175–185, Jan. 2024, doi: 10.1016/J.IJHYDENE.2023.07.277.
[29] A. H. Alobaidi, M. E. Khodayar, and M. Shahidehpour, “Decentralized energy management for unbalanced networked microgrids with uncertainty,” IET Generation, Transmission & Distribution, vol. 15, no. 13, pp. 1922–1938, Jul. 2021, doi: 10.1049/GTD2.12145.
[30] H. Haddadian and R. Noroozian, “Multi-microgrids approach for design and operation of future distribution networks based on novel technical indices,” Applied Energy, vol. 185, pp. 650–663, Jan. 2017, doi: 10.1016/J.APENERGY.2016.10.120.
[31] T. Ding, Y. Lin, Z. Bie, and C. Chen, “A resilient microgrid formation strategy for load restoration considering master-slave distributed generators and topology reconfiguration,” Applied Energy, vol. 199, pp. 205–216, Aug. 2017, doi: 10.1016/J.APENERGY.2017.05.012.
[32] C. Chen, J. Wang, F. Qiu, and D. Zhao, “Resilient Distribution System by Microgrids Formation after Natural Disasters,” IEEE Transactions on Smart Grid, vol. 7, no. 2, pp. 958–966, Mar. 2016, doi: 10.1109/TSG.2015.2429653.
[33] S. Bagheri, H. Talebi, and A. Fereidunian, “Resilient, Comfort and Economic Operation of Smart Nanogrid,” Journal of Control, vol. 12, no. 3, pp. 1–12, Dec. 2018, doi: 10.29252/JOC.12.3.1.
[34] S. Salahi1, N. Rezaei1, J. Moshtagh, “Technovations of Electrical Engineering in Green Energy System,” Technovations of Electrical Engineering in Green Energy System, vol 3، no. 1، 2024, doi: 10.30486/teeges.2023.1996973.1094.
[35] M. R. Sheibani, M. Zeraati, F. Jabbari, E. Heydarian, “Portable Energy Storage Systems Expansion Planning to Improve the Power Systems Resilience,” Technovations of Electrical Engineering in Green Energy System ، vol 3، no. 1، 2024, doi: 10.30486/teeges.2023.1997267.1097.
[36] G. Liu, Y. Xu, and K. Tomsovic, “Bidding strategy for microgrid in day-ahead market based on hybrid stochastic/robust optimization,” IEEE Transactions on Smart Grid, vol. 7, no. 1, pp. 227–237, Jan. 2016, doi: 10.1109/TSG.2015.2476669.
[37] E. kianmehr, S. Nikkhah, and A. Rabiee, “Multi-objective stochastic model for joint optimal allocation of DG units and network reconfiguration from DG owner’s and DisCo’s perspectives,” Renewable Energy, vol. 132, pp. 471–485, Mar. 2019, doi: 10.1016/J.RENENE.2018.08.032.
[38] E. Hooshmand and A. Rabiee, “Energy management in distribution systems, considering the impact of reconfiguration, RESs, ESSs and DR: A trade-off between cost and reliability,” Renewable Energy, vol. 139, pp. 346–358, Aug. 2019, doi: 10.1016/J.RENENE.2019.02.101.
[39] P. Jamatia, S. Bhattacharjee, and S. Sharma, “Allocation of Electric Vehicle Charging Station in Distribution Network along with Distributed Generation Sources,” Proceedings of 2022 6th International Conference on Condition Assessment Techniques in Electrical Systems, CATCON 2022, pp. 196–201, 2022, doi: 10.1109/CATCON56237.2022.10077671.
[40] H. Bagheri Tolabi, M. H. Ali, and M. Rizwan, “Novel Hybrid Fuzzy-Intelligent Water Drops Approach for Optimal Feeder Multi Objective Reconfiguration by Considering Multiple-Distributed Generation,” Journal of Operation and Automation in Power Engineering, vol. 2, no. 2, pp. 91–102, Dec. 2014, Accessed: Oct. 12, 2024.
[Online]. Available: https://joape.uma.ac.ir/article_222.html.
[41] S. Behzadi, A. Bagheri, and A. Rabiee, “Resilience-Oriented Operation of Micro-Grids in both Grid-Connected and Isolated Conditions within Sustainable Active Distribution Networks,” Journal of Operation and Automation in Power Engineering, vol. 13, no. 1, pp. 38–51, Jan. 2025, doi: 10.22098/JOAPE.2023.12142.1902.
[42] A. A. A. El-Ela, R. A. El-Sehiemy, A. M. Kinawy, and E. S. Ali, “Optimal placement and sizing of distributed generation units using different cat swarm optimization algorithms,” 2016 18th International Middle-East Power Systems Conference, MEPCON 2016 - Proceedings, pp. 975–981, Jan. 2017, doi: 10.1109/MEPCON.2016.7837015.
[43] A. Jalili and B. Taheri, “Optimal Sizing and Sitting of Distributed Generations in Power Distribution Networks Using Firefly Algorithm,” Technology and Economics of Smart Grids and Sustainable Energy, vol. 5, no. 1, pp. 1–14, Dec. 2020, doi: 10.1007/S40866-020-00081-9/FIGURES/18.
[44] H. Karimi and S. Jadid, “Optimal energy management for multi-microgrid considering demand response programs: A stochastic multi-objective framework,” Energy, vol. 195, p. 116992, Mar. 2020, doi: 10.1016/J.ENERGY.2020.116992.
[45] N. Rezaei, A. Ahmadi, A. Khazali, and J. Aghaei, “Multiobjective Risk-Constrained Optimal Bidding Strategy of Smart Microgrids: An IGDT-Based Normal Boundary Intersection Approach,” IEEE Transactions on Industrial Informatics, vol. 15, no. 3, pp. 1532–1543, Mar. 2019, doi: 10.1109/TII.2018.2850533.
[46] N. Rezaei, A. Ahmadi, A. H. Khazali, and J. M. Guerrero, “Energy and Frequency Hierarchical Management System Using Information Gap Decision Theory for Islanded Microgrids,” IEEE Transactions on Industrial Electronics, vol. 65, no. 10, pp. 7921–7932, Oct. 2018, doi: 10.1109/TIE.2018.2798616.
[47] M. A. Nasr, E. Nasr-Azadani, A. Rabiee, and S. H. Hosseinian, “Risk-averse energy management system for isolated microgrids considering generation and demand uncertainties based on information gap decision theory,” IET Renewable Power Generation, vol. 13, no. 6, pp. 940–951, Apr. 2019, doi: 10.1049/IET-RPG.2018.5856.
[48] X. Dai, Y. Wang, S. Yang, and K. Zhang, “IGDT-based economic dispatch considering the uncertainty of wind and demand response,” IET Renewable Power Generation, vol. 13, no. 6, pp. 856–866, Apr. 2019, doi: 10.1049/IET-RPG.2018.5581.
[49] A. Khazali, N. Rezaei, A. Ahmadi, and B. Hredzak, “Information Gap Decision Theory Based Preventive/Corrective Voltage Control for Smart Power Systems With High Wind Penetration,” IEEE Transactions on Industrial Informatics, vol. 14, no. 10, pp. 4385–4394, Oct. 2018, doi: 10.1109/TII.2018.2797105.
[50] R. Fathi, B. Tousi, S. Galvani, “Optimal Allocation of Renewable Resources in Distribution Networks Considering Uncertainty Based on Info-Gap Decision Theory Using Improved Salp Swarn Algorithm,” Journal of Modeling in Engineering، vol. 20، no. 68 ، pp. 207–223، , 2022, doi: 10.22075/jme.2021.23075.2078.
[51] M. Poshtyafteh, H. Barati, and A. D. Falehi, “Optimal placement of distribution network-connected microgrids on multi-objective energy management with uncertainty using the modified Harris Hawk optimization algorithm,” IET Generation, Transmission & Distribution, vol. 18, no. 4, pp. 809–833, Feb. 2024, doi: 10.1049/GTD2.13116.
[52] M. Doostizadeh, M. R. Shakarami, and H. Bastami, “Decentralized energy trading framework for active distribution networks with multiple microgrids under uncertainty,” Scientia Iranica, vol. 26, no. Special Issue on machine learning, data analytics, and advanced optimization techniques..., pp. 3606–3621, Dec. 2019, doi: 10.24200/SCI.2019.53962.3557.
[53] H. Bastami, M. R. Shakarami, and M. Doostizadeh, “A decentralized cooperative framework for multi-area active distribution network in presence of inter-area soft open points,” Applied Energy, vol. 300, p. 117416, Oct. 2021, doi: 10.1016/J.APENERGY.2021.117416.
[54] M. Ouyang and L. Dueñas-Osorio, “Multi-dimensional hurricane resilience assessment of electric power systems,” Structural Safety, vol. 48, pp. 15–24, May 2014, doi: 10.1016/J.STRUSAFE.2014.01.001.
[55] A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, and H. Chen, “Harris hawks optimization: Algorithm and applications,” Future Generation Computer Systems, vol. 97, pp. 849–872, Aug. 2019, doi: 10.1016/J.FUTURE.2019.02.028.