یک مطالعه مروری کوتاه از کاربرد و راهبردهای کنترل ریزشبکه¬های جریان متناوب در سیستم قدرت
محورهای موضوعی : مهندسی برق قدرتغضنفر شاهقلیان 1 , مجید معظمی 2 * , مجید دهقانی 3
1 - دانشکده مهندسی برق، واحد نجفآباد، دانشگاه آزاد اسلامی، نجفآباد، ایران
2 - دانشکده مهندسی برق، واحد نجفآباد، دانشگاه آزاد اسلامی، نجفآباد، ایران
3 - دانشکده مهندسی برق، واحد نجفآباد، دانشگاه آزاد اسلامی، نجفآباد، ایران
کلید واژه: انرژی تجدیدپذیر, راهبردهای کنترلی, ریزشبکه, کنترل سلسله مراتبی, منابع تولید پراکنده,
چکیده مقاله :
ریزشبکههای جریان متناوب (AC) جایگاه مرکزی در تحقیقات را از زمان تکامل مفهوم ریزشبکه به خود اختصاص دادهاند. در این مقاله مروری کوتاه از راهبردهای کنترلی و علمیاتی برای ریزشبکههای AC ارائه شده است. ریزشبکه¬های AC از منابع انرژی تولید پراکنده و بارهای مختلف تشکیل شده که با استفاده از باس AC به هم و از طریق مبدل الکترونیکی قدرت به یک ماشین سنکرون متصل می¬شوند. ساختار مختلط ریزشبکه جریان متناوب باعث کاهش اینرسی می¬شود که انحراف فرکانس و نرخ تغییر فرکانس را افزایش می¬دهد و باعث حساس¬تر شدن پایداری کلی سیستم قدرت نسبت به اختلال¬ها می¬گردد. برای تولید ثابت همه واحدهای تولیدی نیاز به یک روش کنترل مناسب است. اعمال کنترل سلسله مراتبی مناسب باعث انعطاف¬پذیری سیستم می¬شود به طوری که ادغام واحدهای توان توزیع شده بیشتری در سیستم امکان¬پذیر است. راهبرد کنترل سلسله مراتبی در هر سه نوع ریزشبکه کاربرد فراوانی دارد. کنترل متمرکز، کنترل غیرمتمرکز و کنترل توزیع سه راهبرد کنترل اساسی بر اساس روش ارتباطی هستند. اشکال اصلی در طرح¬های کنترلی که مبتنی بر کانال¬های ارتباطی هستند، قابلیت اطمینان ضعیف در صورت خرابی پیوندهای ارتباطی است. همچنین دو حالت کار ریزشبکه متصل به شبکه و جزیره¬ای اشاره شده است. کنترل صحیح ریزشبکه در هر دو حالت عملیاتی با چالش¬ها متفاوتی مواجه است. این مطالعه برای تجزیه و تحلیل مقایسه¬ای و توسعه راهبردهای کنترلی در مورد ریزشبکه¬های ac برای تحقیقات آینده مفید خواهد بود.
Alternating current (AC) microgrids have occupied a central position in research since the evolution of the microgrid concept. In this article, a brief review of control and scientific strategies for AC microgrids is presented. AC microgrids consist of distributed energy sources and different loads, which are connected to a synchronous machine using an AC bus and through a power electronic converter. The mixed structure of alternating current microgrid reduces inertia, which increases frequency deviation and frequency change rate, and makes the overall stability of the power system more sensitive to disturbances. For constant production of all production units, a proper control method is needed. Applying appropriate hierarchical control makes the system flexible, so that it is possible to integrate more distributed power units in the system. Hierarchical control strategy is widely used in all three types of microgrids. Centralized control, decentralized control and distributed control are three basic control strategies based on the communication method. The main problem in control schemes based on communication channels is poor reliability in case of communication link failure. Also, two working modes of the microgrid connected to the network and island are mentioned. The correct control of the microgrid in both operating modes faces different challenges. This study will be useful for the comparative analysis and development of control strategies for AC microgrids for future research.
[1] W. Chen, M. Alharthi, J. Zhang, I. Khan, "The need for energy efficiency and economic prosperity in a sustainable environment", Gondwana Research, vol. 127, pp. 22-35, March 2024, doi: 10.1016/j.g¬r.202¬3.03.025.
[2] G. Shahgholian, "A brief review on the performance and control of direct current microgrids in power systems", Energy Engineering and Management, Articles in Press, 2024, doi: 10.22052/eem.202¬4.25¬43¬89.1051.
[3] E. Pagard, S. Shojaeian, M.M. Rezaei, "Improving power system low-frequency oscillations damping based on multiple-model optimal control strategy using polynomial combination algorithm", Energy Reports, vol. 10, pp. 1228-1237, Nov. 2023, doi: 10.1016/j.egyr.2023.07.060.
[4] O. Sharifiyana, M. Dehghani, G. Shahgholian, S.M.M. Mirtalaei, M. Jabbari, "Non-isolated boost converter with new active snubber structure and energy recovery capability", Journal of Circuits, Systems and Computers, vol. 32, no. 5, Article Number: 2350084, March 2023, doi: 10.1142/S0218¬1266¬23500846 .
[5] G. Shahgholian, A. Fathollahi, "Analyzing small-signal stability in a multi-source single-area power system with a load-frequency controller coordinated with a photovoltaic system", AppliedMath, vol. 4, no. 2, pp. 452-467, April 2024, doi: 10.3390/appliedmath4020024.
[6] A. Sotoudeh, M.M. Rezaei , "Robust control of isolated SCIG-based WECS feeding constant power load using adaptive backstepping and fractional order PI methods", International Journal of Dynamics and Control, vol. 12, no. 2, pp. 452-462, Feb. 2024, doi: 10.1007/s40435-023-01196-4.
[7] E. Hosseini, G. Shahgholian, "Different types of pitch angle control strategies used in wind turbine system applications", Journal of Renewable Energy and Environment, vol. 4, no. 1, pp. 20-35, Feb. 2017. doi: 10.30501/jree.2017.70103.
[8] G. Shahgholian, "Comparison and analysis of dynamic behavior of load frequency control in power system with steam, hydro and gas power plants", Hydrogen, Fuel Cell and Energy Storage, vol. 10, no. 4, pp. 311-325, Dec. 2023, doi: 10.22104/hfe.2024.6619.1283.
[9] G. Shahgholian, "An overview of hydroelectric power plant: Operation, modeling, and control", Journal of Renewable Energy and Environment, vol. 7, no. 3, pp. 14-28, July 2020, doi: 10.30501/JR¬EE.2020.221567.1087.
[10] O. Bamisile, D. Cai, H. Adun, M. Taiwo, J. Li, Y.Hu, Q. Huang, "Geothermal energy prospect for decarbonization, EWF nexus and energy poverty mitigation in East Africa; the role of hydrogen production", Energy Strategy Reviews, vol. 49, Article Number: 101157, Sept. 2023, doi: 10.1016/j.e¬sr.20¬23.101157.
[11] X. Wang, L. Liang, X. Zhang, H. Sun, "Distributed real-time temperature and energy control of energy efficient buildings via geothermal heat pumps", CSEE Journal of Power and Energy Systems, vol. 9, no. 6, pp. 2289-2300, Nov. 2023, doi: 10.17775/CSEEJPES.2020.05840.
[12] M.M. Rana, M. Uddin, M.R. Sarkar, S.T. Meraj, G.M. Shafiullah, S.M. Muyeen, M.A. Islam, T. Jamal, "Applications of energy storage systems in power grids with and without renewable energy integration- A comprehensive review", Journal of Energy Storage, vol. 68, Article Nimber: 107811, Sept. 2023, doi: 10.1016/j.est.2023.107811.
[13] O. Sharifiyana, M. Dehghani, G. Shahgholian, S.M.M. Mirtalaee, "Presenting a new high gain boost converter with inductive coupling energy recovery snubber for renewable energy systems- simulation, design and construction", Journal of Solar Energy Research, vol. 8, no. 2, pp. 1417-1436, April 2023, doi: 10.22059/jser.2023.356571.1283.
[14] H. Pourbabak, A. Ajao, T. Chen, W. Su, "Fully distributed ac power flow (ACPF) algorithm for distribution systems", IET Smart Grid, vol. 2, no. 2, pp. 155–162, June 2019, doi: 10.1049/iet-stg.2018.0060.
[15] S. Teymouriyan, G. Shahgholian, B. Fani, "Adaptive protection based on intelligent distribution networks with the help of network factorization in the presence of distributed generation resources", Energy Engineering and Management, vol. 12, no. 3, pp. 34-51, Nov. 2022, doi: 10.22052/12.3.34.
[16] G. Shahgholian, "Comparison and analysis of dynamic behavior of load frequency control in power system with steam, hydro and gas power plants", Hydrogen, Fuel Cell and Energy Storage, vol. 10, no. 4, pp. 311-325, Dec. 2023, doi: 10.22104/hfe.2024.6619.1283.
[17] G. Shahgholian, M. Dehghani, M.R. Yousefi, S.M.M. Mirtalaei, "Small signal stability analysis and frequency control in a single-area multi-source electrical energy system.", Hydrogen, Fuel Cell and Energy Storage, vol. 11, no. 2, pp. 107-116, June 2024, doi: 10.22104/hfe.2024.6799.1291.
[18] J. Yang, S, Guenter, G, Buticchi, C, Gu, Z, Zou, Z, Wang, P, Wheeler, "Identification and stabilization of constant power loads in ac microgrids", IEEE Trans. on Industrial Electronics, vol. 71, no. 2, pp. 1665-1674, Feb. 2024, doi: 10.1109/TIE.2023.3257386.
[19] H. Bisheh, B. Fani, G. Shahgholian, "A novel adaptive protection coordination scheme for radial distribution networks in the presence of distributed generation", International Transactions on Electrical Energy Systems, vol. 31, no. 3, Article Number: e12779, March 2021, doi: 10.1002/2050-7038.12779.
[20] B. Fani, G. Shahgholian, H.H. Alhelou, P. Siano, "Inverter-based islanded microgrid: A review on technologies and control", e-Prime- Advances in Electrical Engineering, Electronics and Energy, vol. 2, Article Number: 100068, 2022, doi: 10.1016/j.prime.2022.100068.
[21] M. García, J. Aguilar, M.D. R-Moreno, "An autonomous distributed coordination strategy for sustainable consumption in a microgrid based on a bio-inspired approach", Energies, vol. 17, no. 3, Article Number: 757, Feb. 2024, doi: 10.3390/en17030757.
[22] B. Keyvani, B. Fani, G. Shahgholian, "Preventing of bifurcation consequences in VSI-dominated micro-grids using virtual impedance theory", Computational Intelligence in Electrical Engineering, vol. 12, no. 1, pp. 48-60, 2021, doi: 10.22108/ISEE.2020.122341.1358.
[23] M.Y. Yousef, M.A. Mosa, A.A. Ali, S.M.E. Masry, A.M.A. Ghany, "Frequency response enhancement of an ac micro-grid has renewable energy resources based generators using inertia controller", Electric Power Systems Research, vol. 196, Article Number: 107194, July 2021, doi: 10.1016/j.epsr.2021.107194.
[24] B. Keyvani-Boroujeni, G. Shahgholian, B. Fani, "A distributed secondary control approach for inverter-dominated microgrids with application to avoiding bifurcation-triggered instabilities", IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 8, no. 4, pp. 3361-3371, Dec. 2020, doi: 10.1109/JESTPE.2020.2974756.
[25] S.B. Siad, A. Malkawi, G. Damm, L. Lopes, L.G. Dol, "Nonlinear control of a dc microgrid for the integration of distributed generation based on different time scales", International Journal of Electrical Power and Energy Systems, vol. 111, pp. 93-100, Oct. 2019, doi: 10.1016/j.ijepes.2019.03.073.
[26] G. Shahgholian, M. Moazzami, S.M. Zanjani, A. Mosavi, A. Fathollahi, "A hydroelectric power plant brief: classification and application of artificial intelligence", Proceeding of the IEEE/SACI, pp. 000141-000146, Timisoara, Romania, May 2023, doi: 10.1109/SACI58269.2023.10158597.
[27] O. Merabet, A. Kheldoun, M. Bouchahdane, A. Eltom, Ahmed Kheldoun, "An adaptive protection coordination for microgrids utilizing an improved optimization technique for user-defined DOCRs characteristics with different groups of settings considering N-1 contingency", Expert Systems with Applications, vol. 248, Article Number: 123449, Aug. 2024, doi: 10.1016/j.eswa.2024.123449.
[28] A. Hussein Sachit, B. Fani, M. Delshad, G. Shahgholian, A. Golsorkhi Esfahani, "Analysis and implementation of second-order step-up converter using winding cross coupled inductors for photovoltaic applications", Journal of Solar Energy Research, vol. 8, no. 2, pp. 1516-1525, April 2023, doi: 10.22059/jser.2023.357285.1291.
[29] H. Fayazi, B. Fani, M. Moazzami, G. Shahgholian, "An offline three-level protection coordination scheme for distribution systems considering transient stability of synchronous distributed generation", International Journal of Electrical Power and Energy Systems, vol. 131, Article Number:107069, Oct. 2021, doi: 10.1016/j.ijepes.2021.107069.
[30] I. Patrao, E. Figueres, G. Garcerá, R. González-Medina, "Microgrid architectures for low voltage distributed generation", Renewable and Sustainable Energy Reviews, vol. 43, pp. 415-424, March 2015, doi: 10.1016/j.rser.2014.11.054.
[31] H. Fayazi, M. Moazzami, B. Fani, G Shahgholian, "A first swing stability improvement approach in microgrids with synchronous distributed generators", International Transactions on Electrical Energy Systems, vol. 31, no. 4, Article Number: e12816, April 2021, doi: 10.1002/2050-7038.12816.
[32] Y. Sabri, N.E. Kamoun, F. Lakrami, "A survey: Centralized, decentralized, and distributed control scheme in smart grid systems", Proceeding of the IEEE/CMT, pp. 1-11, Fez, Morocco, Oct. 2019, doi: 10.1109/CMT.2019.8931370.
[33] R.M. Seresht, M. Miri, M. Zand, M.A. Nasab, P. Sanjeevikumar, B. Khan, "Frequency control scheme of an ac islanded microgrid based on modified new self-organizing hierarchical PSO with jumping time-varying acceleration coefficients", Cogent Engineering, vol. 10, no. 1, 2023, doi: 10.1080/23311916.2022.2157982.
[34] S. Ahmadi, I. Sadeghkhani, G. Shahgholian, B. Fani, J. M. Guerrero, "Protection of LVDC microgrids in grid-connected and islanded modes using bifurcation theory", IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 9, no. 3, pp. 1-8, June 2021, doi: 10.1109/JESTPE.2019.29¬61903.
[35] B. Sahoo, S.K. Routray, P.K. Rout, "Ac, dc, and hybrid control strategies for smart microgrid application: A review", International Transactions on Electrical Energy Systems, vol. 31, no. 1, Article Number: e12683, Jan, 2021, doi: 10.1002/2050-7038.12683.
[36] R. Ghobadi, G Shahgholian, "Providing improved structure and adaptive control strategy for solar system with the ability to improve power quality in islanded microgrid", Technovations of Electrical Engineering in Green Energy System, vol. 2, no. 4, pp. 19-37, March 2024, doi: 10.30486/teeges.2023.1986388.1073.
[37] M. Ahmed, L. Meegahapola, A. Vahidnia, M. Datta, "Stability and control aspects of microgrid architectures- A comprehensive review", IEEE Access, vol. 8, pp. 144730-144766, 2020, doi: 10.1109/ACCESS.2020.3014977.
[38] A. Rashwan, A. Mikhaylov, T. Senjyu, M. Eslami, A.M. Hemeida, D.S.M. Osheba, "Modified droop control for microgrid power-sharing stability improvement", Sustainability, vol. 15, Article Number: 11220, July 2023, doi: 10.3390/su151411220.
[39] L. Meng, C. Su, J. Wu, T. Ren, Z. Wang, H. Yi, "Design and parameter analysis of an improved pre-synchronization method for multiple inverters based on virtual synchronization generator control in microgrid", Energy Reports, vol. 8, pp. 928-937, Aug. 2022, doi: 10.1016/j.egyr.2022.02.111.
[40] J. Lu, X. Liu, M. Savaghebi, X. Hou, P. Wang, "Distributed event-triggered control for harmonic voltage compensation in islanded ac microgrids", IEEE Trans. on Smart Grid, vol. 13, no. 6, pp. 4190-4201, Nov. 2022, doi: 10.1109/TSG.2022.3186284.
[41] M. Yadav, N. Pal, D.K. Saini, "Microgrid control, storage, and communication strategies to enhance resiliency for survival of critical load", IEEE Access, vol. 8, pp. 169047-169069, 2020, doi: 10.1109/ACCESS.2020.3023087.
[42] M.F. Roslan, M.A. Hannan, P.J. Ker, M. Mannan, K.M. Muttaqi, T.M.I. Mahlia, "Microgrid control methods toward achieving sustainable energy management: A bibliometric analysis for future directions", Journal of Cleaner Production, vol. 348, Article Number: 131340, May 2022, doi: 10.1016/j.jclepro.2022.131340.
[43] S. Farhang, G. Shahgholian, B. Fani, "Dynamic behavior improvement of control system in inverter-based island microgrid by adding a mixed virtual impedance loop to voltage control loop", International Journal of Smart Electrical Engineering, vol. 11, no. 1, pp. 27-34, March 2022, dor: 20.1001.1.22519246.2022.11.1.4.0.
[44] S.M. Dawoud, X. Lin, M.I. Okba, "Hybrid renewable microgrid optimization techniques: A review", Renewable and Sustainable Energy Reviews, vol. 82, pp. 2039-2052, Feb. 2018, doi: 10.1016/j.rser.2017.08.007.
[45] S. Mansour, M.I. Marei, A.A. Sattar, "Droop based control strategy for a microgrid", Global Journal of Research in Engineering, vol. 16, no. 7, 2016.
[46] A.J. Albarakati, Y. Boujoudar, M. Azeroual, L. Eliysaouy, H. Kotb, A. Aljarbouh, H.K. Alkahtani, S.M. Mostafa, A. Tassaddiq, A. Pupkov, "Microgrid energy management and monitoring systems: A comprehensive review", Frontiers in Energy Research, vol. 10, Article Number: 1097858, Dec. 2022, doi: 10.3389/fenrg.2022.1097858.
[47] A.A. Khan, M. Naeem, M. Iqbal, S. Qaisar, A. Anpalagan, "A compendium of optimization objectives, constraints, tools and algorithms for energy management in microgrids", Renewable and Sustainable Energy Reviews, vol. 58, pp. 1664-1683, May 2016, doi: 10.1016/j.rser.2015.12.259.
[48] D.Y. Yamashita, I. Vechiu, J.P. Gaubert, "A review of hierarchical control for building microgrids", Renewable and Sustainable Energy Reviews, vol. 118, Article Number: 109523, Feb. 2020, doi: 10.1016/j.rser.2019.109523.
[49] M.T.L. Gayatri, A.M. Parimi, A.V.P. Kumar, "A review of reactive power compensation techniques in microgrids", Renewable and Sustainable Energy Reviews, vol. 81, pp. 1030-1036, Jan. 2018, doi: 10.1016/j.rser.2017.08.006.
[50] Z. Shuai, Y. Sun, Z.J. Shen, W. Tian, C. Tu, Y. Li, X.Yin, "Microgrid stability: Classification and a review", Renewable and Sustainable Energy Reviews, vol. 58, pp. 167-179, May 2016, doi: 10.1016/j.rser.2015.12.201.
[51] A. Radwan, Y. Mohamed, "Modeling, analysis, and stabilization of converter-fed ac microgrids with high penetration of converter-interfaced loads", IEEE Trans. on Smart Grid, vol. 3, no. 3, pp. 1213–1225, Sept. 2012, doi: 10.1109/TSG.2012.2183683.
[52] M.Q. Taha, S. Kurnaz, "Droop control optimization for improved power sharing in ac islanded microgrids based on centripetal force gravity search algorithm", Energies, vol. 16, no. 24, Article Number: 7953, Dec. 2023, doi: 10.3390/en16247953.
[53] S. Patel, S. Chakraborty, B. Lundstrom, S.M. Salapaka, M.V. Salapaka, "Isochronous architecture-based voltage-active power droop for multi-inverter systems", IEEE Trans. on Smart Grid, vol. 12, no. 2, pp. 1088-1103, March 2021, doi: 10.1109/TSG.2020.3037159.
[54] M. Juneja, S.K. Nagar, S.R. Mohanty, "PSO based reduced order modelling of autonomous ac microgrid considering state perturbation", Automatika, vol. 61, no. 1, pp. 66-78, Jan. 2020, doi: 10.1080/00051144.2019.1682867.
[55] G.P. Santos, A. Tsutsumi, J.C.M. Vieira, "Enhanced voltage relay for ac microgrid protection", Electric Power Systems Research, vol. 220, Article Number: 109310, July 2023, doi: 10.1016/j.epsr.2023.109310.
[56] M. Shi, X. Chen, J. Zhou, Y. Chen, J. Wen, H. He, "PI-consensus based distributed control of ac microgrids", IEEE Trans. on Power Systems, vol. 35, no. 3, pp. 2268-2278, May 2020, doi: 10.1109/TPWRS.2019.2950629.
[57] G. Raman, K. Liao, J.C.H. Peng, "Improving ac microgrid stability under cyberattacks through timescale separation", IEEE Trans. on Circuits and Systems, vol. 70, no. 6, pp. 2191-2195, June 2023, doi: 10.1109/TCSII.2023.3234073.
[58] R. Zhang, B. Hredzak, "Nonlinear sliding mode and distributed control of battery energy storage and photovoltaic systems in ac microgrids with communication delays", IEEE Trans. on Industrial Informatics, vol. 15, no. 9, pp. 5149-5160, Sept. 2019, doi: 10.1109/TII.2019.2896032.
[59] E. Hosseini, G. Shahgholian, "Partial- or full-power production in WECS: A survey of control and structural strategies", European Power Electronics and Drives, vol. 27, no. 3, pp. 125-142, Dec. 2017, doi: 10.1080/09398368.2017.1413161.
[60] A.H. Tariq, S.A.A. Kazmi, M. Hassan, S.A.M. Ali, M. Anwar, "Analysis of fuel cell integration with hybrid microgrid systems for clean energy: A comparative review", International Journal of Hydrogen Energy, vol. 52, pp. 1005-1034, Jan. 2024, doi: 10.1016/j.ijhydene.2023.07.238.
[61] A. Baccioli, A. Liponi, J. Milewski, A. Szczęśniak, U. Desideri, "Hybridization of an internal combustion engine with a molten carbonate fuel cell for marine applications", Applied Energy, vol. 298, Article Number: 117192, Sept. 2021, doi: 10.1016/j.apenergy.2021.117192.
[62] J.G. Matos, F.S.F. Silva, L.A.S. Ribeiro, "Power control in ac isolated microgrids with renewable energy sources and energy storage systems", IEEE Trans. on Industrial Electronics, vol. 62, no. 6, pp. 3490-3498, June 2015, doi: 10.1109/TIE.2014.2367463.
[63] A. Singh, S. Suhag, "Frequency regulation in an ac microgrid interconnected with thermal system employing multiverse-optimised fractional order-PID controller", International Journal of Sustainable Energy, vol. 39, no. 3, pp. 250-262, 2020, doi: 10.1080/14786451.2019.1684286.
[64] H. Ibrahim, K. Belmokhtar, M. Ghandour, "Investigation of usage of compressed air energy storage for power generation system improving - application in a microgrid integrating wind energy", Energy Procedia, vol. 73, pp. 305-316, June 2015, doi: 10.1016/j.egypro.2015.07.694.
[65] Palizban, K. Kauhaniemi, "Distributed cooperative control of battery energy storage system in ac microgrid applications", Journal of Energy Storage, vol. 3, pp. 43-51, Oct. 2015, doi: 10.101¬6/j.est.2015.08.005.
[66] M.B. Delghavi, S. Shoja-Majidabad, A. Yazdani, "Fractional-order sliding-mode control of islanded distributed energy resource systems", IEEE Trans. on Sustainable Energy, vol. 7, no. 4, pp. 1482-1491, Oct. 2016, doi: 10.1109/TSTE.2016.2564105.
[67] D. Voumick, P. Deb, M. Khan, "Operation and control of microgrids using IoT (Internet of things)", Journal of Software Engineering and Applications, vol. 14, pp. 418-441, Aug. 2021, doi: 10.4236/jsea.2021.148025.
[68] M. Islam, F. Yang, M. Amin, "Control and optimisation of networked microgrids: A review", IET Renewable Power Generation, vol. 15, no. 6, pp. 1133-1148, April 2021, doi: 10.1049/rpg2.12111.
[69] U. Sur, A. Biswas, J. N. Bera, G. Sarkar, "A modified holomorphic embedding method based hybrid ac-dc microgrid load flow", Electric Power Systems Research, vol. 182, Article 106267, May 2020, doi: 10.1016/j.epsr.2020.106267.
[70] S. Mirsaeidi, X. Dong, S. Shi, B. Wang, "Ac and dc microgrids: A review on protection isseues and approaches", Journal of Electrical Engineering and Technology, vol. 12, no. 6, pp. 2089-2098, 2017, doi: 10.5370/JEET.2017.12.6.2089.
[71] S.M. Behinnezhad, G. Shahgholian, B. Fani, "Simulation of a PV connected to an electrical energy di¬s¬t¬ribution network with internal current loop control and voltage regulator", International Journal of Smart Electrical Engineering, vol. 12, no. 1, pp. 23-30, Feb. 0223, doi: 10.30495/ijse¬e.2021.6¬85745.
[72] J. Hu, Y. Shan, J. M. Guerrero, A. Ioinovici, K. W. Chan, J. Rodriguez, "Model predictive control of microgrids– An overview", Renewable and Sustainable Energy Reviews, vol. 136, Article Number: 110422, Feb. 2021, doi: 10.1016/j.rser.2020.110422.
[73] G. Shahgholian, "A brief review on microgrids: Operation, applications, modeling, and control", International Transactions on Electrical Energy Systems, vol. 31, no. 6, Article Number. e12885, June 2021 (doi: 10.1002/2050-7038.12885).
[74] F. Gao, R. Kang, J. Cao, T. Yang, "Primary and secondary control in dc microgrids: A review", Journal of Modern Power Systems and Clean Energy, vol. 7, no. 2, pp. 227-242, March 2019, doi: 10.1007/s40565-018-0466-5.
[75] M. A. Hossain, H. R. Pota, M.J. Hossain, F. Blaabjerg, "Evolution of microgrids with converter-interfaced generations: Challenges and opportunities", International Journal of Electrical Power and Energy Systems, vol. 109, pp. 160-186, July 2019. doi: 10.1016/j.ijepes.2019.01.038.
[76] F. Katiraei, R. Iravani, N. Hatziargyriou, A. Dimeas, "Microgrids management", IEEE Power and Energy Magazine, vol. 6, no. 3, pp. 54-65, May/June 2008, doi: 10.1109/MPE.2008.918702.
[77] A. Bidram, A. Davoudi, "Hierarchical structure of microgrids control system", IEEE Trans. on Smart Grid, vol. 3, no. 4, pp. 1963-1976, Dec. 2012, doi: 10.1109/TSG.2012.2197425.
[78] H. Karmi, B. Fani, G. Shahgholian, "Coordinated protection scheme based on virtual impedance control for loop-based microgrids", Journal of Intelligent Procedures in Electrical Technology, vol. 12, no. 46, pp. 15-32, Sept. 2021, dor: 20.1001.1.23223871.1400.12.2.2.0.
[79] A.D. Bintoudi, L. Zyglakis, A.C. Tsolakis, D. Ioannidis, L. Hadjidemetriou, L. Zacharia, N. Al-Mutlaq, M. Al-Hashem, S. Al-Agtash, E. Kyriakides, C. Demoulias, D. Tzovaras, "Hybrid multi-agent-based adaptive control scheme for ac microgrids with increased fault-tolerance needs", IET Renewable Power Generation, vol. 14, no. 1, pp. 13-26, 2020, doi: 10.1049/iet-rpg.2019.0468.
[80] Y. Gu, H. Yang, W. Sun, Y. Chi, W. Li, X. He, "Hierarchical control of dc microgrids robustness and smartness", CSEE Journal of Power and Energy Systems, vol. 6, no. 2, pp. 384-393, June 2020, doi: 10.17775/CSEEJPES.2017.00920.
[81] X. Feng, A. Shekhar, F. Yang, R.E. Hebner, P. Bauer, "Comparison of hierarchical control and distributed control for microgrid", Electric Power Components and Systems, vol. 45, no. 10, pp. 1043-1056, 2017, doi: 10.1080/15325008.2017.1318982.
[82] D. Jain, D. Saxena, "Comprehensive review on control schemes and stability investigation of hybrid ac-dc microgrid", Electric Power Systems Research, vol. 218, Article Number: 109182, May 2023, doi: 10.1016/j.epsr.2023.109182.
[83] A. Villalón, M. Rivera, Y. Salgueiro, J. Muñoz, T. Dragičević, F. Blaabjerg, "Predictive control for microgrid applications: A review study", Energies, vol. 13, no. 10, Article Number: 2454, May 2020, doi: 10.3390/en13102454.
[84] N. Sheykhi, A. Salami, J.M. Guerrero, G.D. Agundis-Tinajero, T. Faghihi, "A comprehensive review on telecommunication challenges of microgrids secondary control", International Journal of Electrical Power and Energy Systems, vol. 140, Article Number: 108081, Sept. 2022, doi: 10.1016/j.ijepes.2022.108081.
[85] A.A. Memon, K. Kauhaniemi, "A critical review of ac microgrid protection issues and available solutions", Electric Power Systems Research, vol. 129, pp. 23-31, Dec. 2015, doi: 10.1016/j.epsr.2015.07.006.
[86] Z. Yang , L. Huang, Z. Yi, Y. Hu, "A review on hierarchical control strategy in microgrid", Proceeding of the ICITEE, pp. 1-6, Dec. 2019, doi: 10.1145/3386415.3387038.
[87] B. Keyvani, B. Fani, H. Karimi, M. Moazzami, G. Shahgholian, "Improved droop control method for reactive power sharing in autonomous microgrids", Journal of Renewable Energy and Environment, vol. 9, no. 3, pp. 1-9, Sept. 2022, doi: 10.30501/jree.2021.298138.1235.
[88] R. Dadi, K. Meenakshy, S. Damodaran, "A review on secondary control methods in dc microgrid", Journal of Operation and Automation in Power Engineering, vol. 11, no. 2, pp. 105-112, Aug. 2023, doi: 10.22098/joape.2022.9157.1636.
[89] S.K. Sahoo, A.K. Sinha, N.K. Kishore, "Control techniques in ac, dc, and hybrid ac–dc microgrid: A review", IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 6, no. 2, pp. 738-759, June 2018, doi: 10.1109/JESTPE.2017.2786588.
[90] P. Borazjani, N.I.A. Wahab, H.B. Hizam, A.B.C. Soh, "A review on microgrid control techniques", Proceeding of the IEEE/ISGT, pp. 749-753, Kuala Lumpur, Malaysia, May 2014, doi: 10.1109/ISGT-Asia.2014.6873886.
[91] A.L. Dimeas, N.D. Hatziargyriou, "Operation of a multiagent system for microgrid control", IEEE Trans. on Power Systems, vol. 20, no. 3, pp. 1447-1455, Aug. 2005, doi: 10.1109/TPWRS.20¬05.852060.
[92] T. Logenthiran, R.T. Naayagi, W.L. Woo, V.T. Phan, K. Abidi, "Intelligent control system for microgrids using multiagent system", IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 3, no. 4, pp. 1036-1045, Dec. 2015, doi: 10.1109/JESTPE.2015.2443187.
[93] C.N. Papadimitriou, E.I. Zountouridou, N.D. Hatziargyriou, "Review of hierarchical control in DC microgrids", Electric Power Systems Research, vol. 122, pp. 159-167, March 2015, doi: 10.1016/j.epsr.2015.01.006.
[94] S.K. Mazumder, M. Tahir, K. Acharya, "Master–slave current-sharing control of a parallel dc–dc converter system over an RF communication interface", IEEE Trans. on Industrial Electronics, vol. 55, no. 1, pp. 59-66, Jan. 2008, doi: 10.1109/TIE.2007.896138.
[95] F. Deng, W. Yao, X. Zhang, Y. Tang, P. Mattavelli, "Review of impedance-reshaping-based power sharing strategies in islanded ac microgrids", IEEE Trans. on Smart Grid, vol. 14, no. 3, pp. 1692-1707, May 2023, doi: 10.1109/TSG.2022.3208752.
[96] O. Sharifiyana, M. Dehghani, G. Shahgholian, S. Mirtalaee, M. Jabbari, "An overview of the structure and improvement of the main parameters of non-isolated dc/dc boost converters", Journal of Intelligent Procedures in Electrical Technology, vol. 12, no. 47, pp. 1-29, Dec. 2021, dor: 20.1001.1.23223871.1400.12.48.6.6.
[97] A. Elmouatamid, R. Ouladsine, M. Bakhouya, N.E. Kamoun, M. Khaidar, K. Zine-Dine, "Review of control and energy management approaches in micro-grid systems", Energies, vol. 14, no. 1, Article Number: 168, Dec. 2021, doi: 10.3390/en14010168.
[98] F. Mohammadzamani, M. Hashemi, G. Shahgholian, "Adaptive control of nonlinear time delay systems in the presence of output constraints and actuator’s faults", International Journal of Control, vol. 96, no. 3, pp. 541-553, March 2023, doi: 10.1080/00207179.2021.2005257.
[99] F. Mohammadzamani, M. Hashemi, G. Shahgholian, "Adaptive neural control of non-linear fractional order multi-agent systems in the presence of error constraints and input saturation", IET Control Theory and Applications, vol. 16, no. 13, pp. 1283-1298, Sept. 2022, doi: 10.1049/cth2.12291.
[100] Y. Liu, Q. Zhang, C. Wang, N. Wang, "A control strategy for microgrid inverters based on adaptive three-order sliding mode and optimized droop controls", Electric Power Systems Research, vol. 117, pp. 192–201, Dec. 2014, doi: 10.1016/j.epsr.2014.08.021.
[101] M. Yousif, Q. Ai, Y. Gao, W.A. Wattoo, Z. Jiang, R. Hao, "An optimal dispatch strategy for distributed microgrids using PSO", CSEE Journal of Power and Energy Systems, vol. 6, no. 3, pp. 724-734, Sept. 2020, doi: 10.17775/CSEEJPES.2018.01070.
[102] M. Dashtdar, A. Flah, S.M.S. Hosseinimoghadam, C.R. Reddy, H. Kotb, K.M. AboRas, E.C. Bortoni, "Improving the power quality of island microgrid with voltage and frequency control based on a hybrid genetic algorithm and PSO", IEEE Access, vol. 10, pp. 105352-105365, 2022, doi: 10.1109/ACCES¬S.20¬22.3201819.
[103] S. Chaturvedi, D. Fulwani, J. M. Guerrero, "Adaptive-SMC based output impedance shaping in dc microgrids affected by inverter loads", IEEE Trans. on Sustainable Energy, vol. 11, no. 4, pp. 2940-2949, Oct. 2020, doi: 10.1109/TSTE.2020.2982414.
[104] Z. Chen, A. Luo, H. Wang, Y. Chen, M. Li, Y. Huang, "Adaptive sliding-mode voltage control for inverter operating in islanded mode in microgrid", International Journal of Electrical Power and Energy Systems, vol. 66, pp. 133–143, March 2015.
[105] A.M. Hussien, J. Kim, A. Alkuhayli, M. Alharbi, H.M. Hasanien, M. Tostado-Véliz, R.A. Turky, F. Jurado, "Adaptive PI control strategy for optimal microgrid autonomous operation", Sustainability, vol. 14, no. 22, Article Number: 14928, Nov. 2022, doi: 10.3390/su142214928.
[106] J. Kaushal, P. Basak, "A decision making methodology to assess power quality monit¬ori¬ng index of an ac microgrid using fuzzy inference systems", Electric Power Components and Systems, vol. 47, no. 14-15, pp. 1349-1361, 2019, doi: 10.1080/15325008.2019.1689448.
[107] X. Shen, H. Wang, J. Li, Q. Su, L. Gao, "Distributed secondary voltage control of islanded microgrids based on RBF-neural-network sliding-mode technique", IEEE Access, vol. 7, pp. 65616-65623, May 2019, doi: 10.1109/ACCESS.2019.2915509.
[108] M.A. Hossain, H.R. Pota, S. Squartini, A.F. Abdou, "Modified PSO algorithm for real-time energy management in grid-connected microgrids", Renewable Energy, vol. 136, pp. 746-757, June 2019, doi: 10.1016/j.renene.2019.01.005.
[109] R.A. Badwawi, W.R. Issa, T.K. Mallick, M. Abusara, "Supervisory control for power management of an islanded ac microgrid using a frequency signalling-based fuzzy logic controller", IEEE Trans. on Sustainable Energy, vol. 10, no. 1, pp. 94-104, Jan. 2019, doi: 10.1109/TSTE.2018.2825655.
[110] T. Kerdphol, M. Watanabe, K. Hongesombut, Y. Mitani, "Self-adaptive virtual inertia control-based fuzzy logic to improve frequency stability of microgrid with high renewable penetration", IEEE Access, vol. 7, pp. 76071-76083, June 2019, doi: 10.1109/ACCESS.2019.2920886.
[111] M. Cucuzzella, G.P. Incremona, A. Ferrara, "Decentralized sliding mode control of islanded ac microgrids with arbitrary topology", IEEE Trans. on Industrial Electronics, vol. 64, no. 8, pp. 6706-6713, Aug. 2017, doi: 10.1109/TIE.2017.2694346.
[112] H. Pan, Q. Teng, D. Wu, "MESO-based robustness voltage sliding mode control for ac islanded microgrid", Chinese Journal of Electrical Engineering, vol. 6, no. 2, pp. 83-93, June 2020, doi: 10.23919/CJEE.2020.000013.
[113] Q. Zhang, Y.Liu, Y. Zhao, N.Wang, "A multi-mode operation control strategy for flexible microgrid based on sliding-mode direct voltage and hierarchical controls", ISA Transactions, Vol. 61, pp. 188-198, March 2016, doi: 10.1016/j.isatra.2015.11.027.