مدلسازی غیرخطی برنامههای پاسخگویی بار در سیستمهای قدرت با در نظر گرفتن نامعینی میزان مشارکت مشترکین
محورهای موضوعی : مهندسی برق قدرتاحسان بهرامی 1 , محمدرضا مرادیان 2
1 - دانشکده مهندسي برق، واحد نجفآباد، دانشگاه آزاد اسلامی، نجفآباد، ايران
2 - دانشکده مهندسي برق، واحد نجفآباد، دانشگاه آزاد اسلامی، نجفآباد، ايران
کلید واژه: پاسخگویی بار, کشش, منحنی تداوم بار, مدلهای غیرخطی, مشارکت مشترکین,
چکیده مقاله :
چالش مصرف بیرویه انرژی و مسائل زیستمحیطی تابع آن از یکسو و مشکلات بهرهبرداری بهینه از سیستمهای قدرت تجدید ساختاریافته از سوی دیگر ایجاب مینماید که مدیریت مناسبی در سمت مصرف صورت پذیرد. در این زمینه برنامه¬های پاسخگویی بار برنامه¬هایی هستند که بسته به نوع برنامه، مشترکین و مصرفکنندگان را تشویق، ترغیب یا مجبور می¬کند که الگوهای مصرفی خود را در چهارچوب¬های وضعشده از طرف بهرهبردار شبکه تنظیم کنند. در این مقاله، باهدف دستیابی به دقت بالاتر، مدلهای غیرخطی برای برنامههای پاسخگویی بار (مدلهای توانی، نمایی و لگاریتمی) مبتنی بر برنامههای تشویق محور و برنامههای زمان محور، بر اساس کشش قیمت و تابع سود مشتری توسعه داده شده است. سپس رفتار مدل¬های منظورشده در برابر تغییرات کشش، تشویق، جریمه و تأثیر میزان مشارکت مشترکین در قالب سناریوهای مختلف بررسی و ارائه شده است. از آنجاییکه میزان مشارکت مشترکین در این برنامهها تابع عوامل مختلف اقتصادی، فرهنگی و اجتماعی است، قابل پیشبینی دقیق نبوده و تغییرات آن تأثیر شایانی در نتایج حاصل از برنامه دارد، درصد مشارکت مشترکین را بهعنوان یک پارامتر نامعین که تغییراتی منطبق بر تابع توزیع احتمال نرمال دارد مدلسازی و در استخراج نتایج منظور شده است. نتایج بهدستآمده نشان میدهد که مدلهای غیرخطی نسبت به مدل خطی دارای دقت بیشتری بوده و محافظهکارانهتر عمل مینمایند. از طرفی مقایسه این نتایج مشخص میکند که لحاظ نمودن میزان مشارکت مشترکین بهعنوان یک پارامتر نامعین نرمال، ضمن آنکه نتایج را قابلاطمینانتر مینماید، پیک سایی شبکه را بهبود بخشیده و انرژی مصرفی در کل شبکه را نیز کاهش بیشتری میدهد.
The challenge of excessive energy consumption, related environmental issues, and optimal utilization of restructured power systems require proper management on the demand side. In this context, demand response programs, try to encourage, persuade, or force consumers to adjust their consumption patterns within that established by the system operator. In this article, to improve accuracy, nonlinear models for demand response programs (power, exponential, and logarithmic models) for incentive-based and time-based programs, have been developed based on price elasticity and customer profit function. Then, the behavior of the proposed models against changes in elasticity, encouragement/penalty rate, and the effect of consumer participation have been investigated in several scenarios. Since consumer participation in these programs depends on various economic, cultural, and social factors, it cannot be accurately predicted. In addition, consumer participation has a significant effect on the program results. So, the consumer participation percentage has been considered an uncertain parameter based on a normal probability distribution function. The results show that the non-linear models are more accurate and more conservative than the linear model. Moreover, considering consumer participation as an uncertain normal parameter results in more reliable responses with more peak reduction and a greater reduction in total energy consumption.
M. Samadi, M. H. Javidi, and M. S. Ghazizadeh, “The effect of time-based demand response program on LDC and reliability of power system,” in 2013 21st Iranian Conference on Electrical Engineering (ICEE), IEEE, May 2013, pp. 1–6, doi: 10.1109/IranianCEE.2013.6599801.
G. Hosseini, Mozafari, S. B., and Soleymani, S., “Energy Management and Operational Planning of Networked Microgrids in a Stochastic Environment,” Technovations of Electrical Engineering in Green Energy System, vol. 3, no. 1, pp. 77–97, Feb. 2024, doi: 10.30486/teeges.2024.2001380.1111.
P. Siano, “Demand response and smart grids—A survey,” Renewable and Sustainable Energy Reviews, vol. 30, pp. 461–478, Feb. 2014, doi: 10.1016/j.rser.2013.10.022.
A. J. Roscoe and G. Ault, “Supporting high penetrations of renewable generation via implementation of real-time electricity pricing and demand response,” IET Renewable Power Generation, vol. 4, no. 4, p. 369, 2010, doi: 10.1049/iet-rpg.2009.0212.
M. Zare, S. Saeed, and H. Akbari, “Demand Response Programs Modeling in Multiple Energy and Structure Management in Microgrids Equipped by Combined Heat and Power Generation,” Journal of Intelligent Procedures in Electrical Technology, vol. 14, no. 53, pp. 99–120, 2023 (in Persian), dor: 20.1001.1.23223871.1402.14.53.6.0.
M. Di Somma, G. Graditi, and P. Siano, “Optimal Bidding Strategy for a DER Aggregator in the Day-Ahead Market in the Presence of Demand Flexibility,” IEEE Transactions on Industrial Electronics, vol. 66, no. 2, pp. 1509–1519, Feb. 2019, doi: 10.1109/TIE.2018.2829677.
E. Vonesh and V. M. Chinchilli, Linear and Nonlinear Models for the Analysis of Repeated Measurements, CRC Press, 1996, doi: 10.1201/9781482293272.
S. Salehi, N. Rezaei, and J. Moshtagh, “Techno-Economic Modelling of a Resilience Enhancement Strategy Based on Multi-microgrid Operational Capabilities,” Technovations of Electrical Engineering in Green Energy System, vol. 3, no. 1, pp. 35–57, 2024, doi: 10.30486/teeges.2023.1996973.1094.
S. Alavimatin, A. Radmehr, P. Ahmarinejad, and S. A. Mansouri, “Distribution Systems Energy Management in the presence of Smart Homes, Renewable Energy Resources, and Demand Response Programs by Considering Uncertainties,” Journal of Intelligent Procedures in Electrical Technology, vol. 14, no. 53, pp. 79–98, 2023 (in Persian), dor: 20.1001.1.23223871.1402.14.53.5.9.
M. Latifi, A. Rastegarnia, A. Khalili, V. Vahidpour, and S. Sanei, “A distributed game-theoretic demand response with multi-class appliance control in smart grid,” Electric Power Systems Research, vol. 176, p. 105946, Nov. 2019, doi: 10.1016/j.epsr.2019.105946.
C.-W. Chu and G. P. Zhang, “A comparative study of linear and nonlinear models for aggregate retail sales forecasting,” Int J Prod Econ, vol. 86, no. 3, pp. 217–231, Dec. 2003, doi: 10.1016/S0925-5273(03)00068-9.
N. Eslaminia and H. R. Mashhadi, “Enhancing Peak Shaving through Nonlinear Incentive-Based Demand Response: A Consumer-Centric Utility Optimization Approach,” International Transactions on Electrical Energy Systems, vol. 2023, pp. 1–15, Sep. 2023, doi: 10.1155/2023/4650539.
S. Yousefi, M. P. Moghaddam, and V. J. Majd, “Optimal real time pricing in an agent-based retail market using a comprehensive demand response model,” Energy, vol. 36, no. 9, pp. 5716–5727, Sep. 2011, doi: 10.1016/j.energy.2011.06.045.
A. J. Conejo, J. M. Morales, and L. Baringo, “Real-Time Demand Response Model,” IEEE Trans Smart Grid, vol. 1, no. 3, pp. 236–242, Dec. 2010, doi: 10.1109/TSG.2010.2078843.
G. Liu and K. Tomsovic, “A full demand response model in co-optimized energy and reserve market,” Electric Power Systems Research, vol. 111, pp. 62–70, Jun. 2014, doi: 10.1016/j.epsr.2014.02.006.
R. C. Feenstra, P. Luck, M. Obstfeld, and K. N. Russ, “In Search of the Armington Elasticity,” Rev Econ Stat, vol. 100, no. 1, pp. 135–150, Mar. 2018, doi: 10.1162/REST_a_00696.
X. Qu, H. Hui, S. Yang, Y. Li, and Y. Ding, “Price elasticity matrix of demand in power system considering demand response programs,” IOP Conf Ser Earth Environ Sci, vol. 121, p. 052081, Feb. 2018, doi: 10.1088/1755-1315/121/5/052081.
N. Venkatesan, J. Solanki, and S. K. Solanki, “Residential Demand Response model and impact on voltage profile and losses of an electric distribution network,” Appl Energy, vol. 96, pp. 84–91, Aug. 2012, doi: 10.1016/j.apenergy.2011.12.076.
H. Jalili, M. K. Sheikh-El-Eslami, M. P. Moghaddam, and P. Siano, “Modeling of demand response programs based on market elasticity concept,” J Ambient Intell Humaniz Comput, vol. 10, no. 6, pp. 2265–2276, Jun. 2019, doi: 10.1007/s12652-018-0821-4.
H. A. Aalami, M. Parsa Moghaddam, and G. R. Yousefi, “Evaluation of nonlinear models for time-based rates demand response programs,” International Journal of Electrical Power & Energy Systems, vol. 65, pp. 282–290, Feb. 2015, doi: 10.1016/j.ijepes.2014.10.021.
R. Sharifi, S. H. Fathi, A. Anvari-Moghaddam, J. M. Guerrero, and V. Vahidinasab, “An economic customer-oriented demand response model in electricity markets,” in 2018 IEEE International Conference on Industrial Technology (ICIT), IEEE, Feb. 2018, pp. 1149–1153, doi: 10.1109/ICIT.2018.8352340.
M. Rahmani-andebili, “Modeling nonlinear incentive-based and price-based demand response programs and implementing on real power markets,” Electric Power Systems Research, vol. 132, pp. 115–124, Mar. 2016, doi: 10.1016/j.epsr.2015.11.006.
M. Vahid-Ghavidel, M. S. Javadi, M. Gough, S. F. Santos, M. Shafie-khah, and J. P. S. Catalão, “Demand Response Programs in Multi-Energy Systems: A Review,” Energies (Basel), vol. 13, no. 17, p. 4332, Aug. 2020, doi: 10.3390/en13174332.
H. A. Aalami, H. Pashaei-Didani, and S. Nojavan, “Deriving nonlinear models for incentive-based demand response programs,” International Journal of Electrical Power & Energy Systems, vol. 106, pp. 223–231, Mar. 2019, doi: 10.1016/j.ijepes.2018.10.003.
S. Nojavan and H. Aalami, “Stochastic energy procurement of large electricity consumer considering photovoltaic, wind-turbine, micro-turbines, energy storage system in the presence of demand response program,” Energy Convers Manag, vol. 103, pp. 1008–1018, Oct. 2015, doi: 10.1016/j.enconman.2015.07.018.
D. H. Annis, “Probability and Statistics: The Science of Uncertainty,” Am Stat, vol. 59, no. 3, pp. 276–277, Aug. 2005, doi: 10.1198/tas.2005.s248.
A. Asadinejad, A. Rahimpour, K. Tomsovic, H. Qi, and C. Chen, “Evaluation of residential customer elasticity for incentive based demand response programs,” Electric Power Systems Research, vol. 158, pp. 26–36, May 2018, doi: 10.1016/j.epsr.2017.12.017.