گروههای سـازگار مـیسلیومی و تنوع ژنتیـکی در جمعیـتهای قارچ Sclerotinia sclerotiorum عامل پوسیدگی اسکلروتینیایی ساقه کلزا در استان مازندران
محورهای موضوعی : بیماری شناسی گیاهی
سارا محسنی چمازکتی
1
,
سعید رضائى
2
*
,
علیرضا دلیلی
3
,
مجید الداغی
4
1 - دانشجوی دکتری بیماری شناسی گیاهی، گروه گیاهپزشکی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
2 - استادیار، گروه گیاهپزشکی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
3 - استادیار، بخش تحقیقات گیاهپزشکی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان مازندران، ساری، ایران
4 - استادیار، بخش تحقیقات گیاهپزشکی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان مازندران، ساری، ایران
کلید واژه: تنوع ژنتیکی, سازگاری میسلیومی, نشانگرهای ریزماهواره, کلزا, پوسیدگی اسکلروتینیایی ساقه,
چکیده مقاله :
بیماری پوسیدگی اسکلروتینیایی ساقه، ناشی از قارچ Sclerotinia sclerotiorum، یکی از مهمترین بیماريهاي کلزا در ایران میباشد. به منظور ارزیابی تنوع ژنتیکی جدایههای S. sclerotiorum، نمونهبرداری از مزارع کلزا در مناطق مختلف استان مازندران انجام گرفت. تعداد 56 جدایه، براساس پراکنش جغرافیایی انتخاب گردید، سپس، جهت بررسی ساختار ژنتیکی جدایه ها، از گروههـای سازگاری میسلیـومی (MCGs) و نشانگرهای ریزمـاهـواره (SSRs) استفاده شد. در مجـموع، 32 گروه سازگاری میسلیومی شناسایی شد که 4/59 درصد از آنها فقط شامل یک جدایه بودند، درحالیکه سایر گروهها، 7-2 جدایه داشتند. آزمون مولکولی با استفاده از 10 جفت آغازگر ریزماهواره انجام گردید. در نهایت، 31 هاپلوتیپ ریزماهواره در همه جمعیتها شناسایی و چند هاپلوتیپ با فراوانی بالا یافت شدند. تنوع ژنی در هفت جمعیت در محدوده 4120/0 تا 5111/0 متغیر بود. بیشترین و کمترین تنوع ژنتیکی درون جمعیت به ترتیب مربوط به جمعیت شهرستانهای بهشهر و ساری بود. بین هاپلوتیپهای ریزماهواره و گروههای سازگاری میسلیومی ارتباط معنیداری مشاهده نشد (75/0V=، 36/0P=). نتایج حاصل از این مطالعه براي اصلاح ارقام مقاوم و توسعه راهبردهای مدیریت بیماري پوسیدگی اسکلروتینیایی ساقه مفید خواهد بود.
Sclerotinia stem rot, caused by the fungus Sclerotinia sclerotiorum, is one of the most important diseases of rapeseed in Iran. To assess the genetic diversity of S. sclerotiorum isolates, sampling was conducted from rapeseed fields in different regions of Mazandaran Province. A total of 56 isolates were selected based on their geographical distribution. Then, mycelial compatibility groups (MCGs) and simple sequence repeat (SSR) markers were used to analyze the genetic structure of these distinct isolates. In total, 32 MCGs were identified, of which 59.4% contained only a single isolate, while the remaining groups consisted of 2 to 7 isolates. Molecular analysis was performed using 10 pairs of microsatellite primers. In total, 31 microsatellite haplotypes were identified across all populations, with a few haplotypes found at high frequencies. Gene diversity among the seven populations ranged from 0.4120 to 0.5111. The highest and lowest levels of genetic diversity among the populations were observed in the Behshahr and Sari counties, respectively. No significant association was found between microsatellite haplotypes and mycelial compatibility groups (V = 0.75, p = 0.36). The findings of this study will be beneficial for breeding resistant cultivars and developing disease management strategies for Sclerotinia stem rot.
یوسف دوست، و. و قوستا، ی. 1394. گروه¬هاي سازگار میسلیومی و بیماریزایی جدایه¬هاي قارچ عامل پوسیدگی سر کلم در ارومیه. مجله علمی کشاورزی 38(1): 78-67.
Ajiboye, T.O. Visser, H.G., Erasmus, E. and Schutte-Smith, M. 2025. Recent strategies for controlling the white mould fungal pathogen (Sclerotinia sclerotiorum) using gene silencing, botanical fungicides and nanomaterials. Sustainable Food Technology 3: 612-636.
Aldrich-Wolfe, L., Travers, S. and Nelson, B.D. 2015. Genetic variation of Sclerotinia sclerotiorum from multiple crops in the north central United States. PLoS One 10(9): e0139188. https://doi.org/10.1371/journal.pone.0139188.
Barari, H., Dalili, S.A. and Hassani, H.M. 2017. Genetic diversity among different isolates of Sclerotinia sclerotiorum in north of Iran. Journal of Bacteriology and Mycology 5(5): 387‒389.
Barari, H., Alavi, V. and Badalyan, S.M. 2012. Genetic and morphological differences among populations of Sclerotinina sclerotiorum by microsatellite markers, mycelial compatibility groups (MCGs) and aggressiveness in North Iran. Romanian Agricultural Research 29: 323-331.
Barari, H., Dalili, S.A. and Badalyan, S.M. 2014. Mycelial compatibility grouping and aggressiveness of Sclerotinia sclerotiorum on different hosts in North of Iran. Jordan Journal of Agricultural Sciences 10(1): 45-57. http://dx.doi.org/10.12816/0029873.
Bolton, M.D., Thomma, B.P.H.J. and Nelson, B.D. 2006. Sclerotinia sclerotiorum (Lib.) de Bary: Biology and Molecular Traits of a Cosmopolitan Pathogen. Molecular Plant Pathology 7: 1-16.
Carbone, I., Anderson, J.B. and Kohn, L.M. 1999. Patterns of descent in clonal lineages and their multilocus fingerprints are resolved with combined gene genealogies. Evolution 53: 11-21.
Clarkson, J.P., Conventry, E., Kitchen. J., Carter, H.E. and Whipps, J.M. 2013. Population structure of Sclerotinia sclerotiorum in crop and wild hosts in the UK. Plant Pathology 62(2): 309-324.
Irani, H., Heydari, A., Javan-Nikkhah, M. and Ibrahimov, A.S. 2011. Pathogenicity variation and mycelial compatibility groups in Sclerotinia sclerotiorum. Journal of Plant Protection Research 51(4) 329-336.
Faraghati, M., Abrinbana, M. and Ghosta, Y. 2022. Genetic structure of Sclerotinia sclerotiorum populations from sunflower and cabbage in West Azarbaijan province of Iran. Scientific Reports 12: 9263. https://doi.org/10.1038/s41598-022-13350-7.
Hemmati, R., Javan-Nikkhah, M. and Linde, C.C. 2009. Population genetic structure of Sclerotinia sclerotiorum on canola in Iran. European Journal of Plant Pathology 125: 617-628.
Karimi, E., Safaie, N. and Shams-Bakhsh, M. 2012. Mycelial compatibility groupings and pathogenic diversity of Sclerotinia sclerotiorum (Lib.) de Bary populations on canola in Golestan Province of Iran. Journal of Agricultural Science and Technology 14: 421-434.
Khan, M.A., Cowling, W.A., Banga, S.S., Barbetti, M.J., Cantila, A.Y., Amas, J.C., Thomas, W.J., You, M.P., Tyagi, V., Bharti, B. and Edwards, D. 2023. Genetic and molecular analysis of stem rot (Sclerotinia sclerotiorum) resistance in Brassica napus (canola type). Helyon 9: 1-12. https://doi.org/10.1016/j.heliyon.2023.e19237.
Kohli, Y., Brunner, L.J., Yoell, H, Milgroom, M.G., Anderson, J.B., Morrall, R.A. and Kohn, L.M. 1995. Clonal dispersal and spatially mixing in populations of the plant pathogenic fungus, Sclerotinia sclerotiorum. Molecular Ecology 4(1): 69-77.
Kohn, L.M. 1995. The clonal dynamic in wild and agricultural plant pathogen populations. Canadian Journal of Botany 73(S1): 1231–1240. http://dx.doi.org/10.1139/b95-383.
Lehner, M.S., Paula Júnior, T.J., Hora Júnior, B.T., Teixeira, H., Vieira, R.F., Carneiro, J.E.S. and Mizubuti, E.S.G. 2015. Low genetic variability in Sclerotinia sclerotiorum populations from common bean fields in Minas Gerais State, Brazil, at regional, local and micro-scales. Plant Pathology 64: 921-931.
Litholdo Júnior, C.G., Gomes, E.V., Lobo Júnior, M., Nasser, L.C.B. and Petrofeza, S. 2011. Genetic diversity and mycelial compatibility groups of the plant-pathogenic fungus Sclerotinia sclerotiorum in Brazil. Genetics and Molecular Research 10(2): 868-877.
Liu, J., Meng, Q., Zhang, Y., Xiang, H., Li, Y., Shi, F., Ma, L., Liu, C., Liu, Y., Su, B. and Li, Z. 2018. Mycelial compatibility group and genetic variation of sunflower Sclerotinia sclerotiorum in Northeast China. Physiological and Molecular Plant Pathology 102: 185-192. https://doi.org/10.1016/j.pmpp. 2018.03.006.
Liu, K. and Muse, S.V. 2005. PowerMarker: An integrated analysis environment for genetic marker analysis. Bioinformatics 21(9): 2128–2129. https://doi.org/10.1093/bioinformatics/bti282.
McDonald, B.A. and Linde, C. 2002. Pathogen population genetics, evolutionary potential, and durable resistance. Annual Review of Phytopathology 40: 349-379. https://doi.org/10.1146/annurev.phyto.40.120501. 101443.
Nei, M. 1973. Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences of the United States of America 70: 3321-3323.
Pakdaman, B.S. and Goltapeh, E.M. 2007. In vitro studies on the integrated control of rapeseed white stem rot disease through the application of herbicides and Trichoderma species. Pakistan Journal of Biological Sciences 10(1): 7-12.
Peakall, R. and Smouse, P.E. 2012. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-An update. Bioinformatics 28(19): 2537-2539.
Pethybridge, S.J., Murphy, S., Lund, M. and Kikkert, J.R. 2024. Survival of Sclerotinia sclerotiorum sclerotia in central New York. Plant Disease 108(5): 1165-1172.
Reich, J., McLaren, D.L., Kim, Y.M., Wally, O., Yevtushenko, D., Hamelin, R. and Chatterton, S. 2024. Predicting airborne ascospores of Sclerotinia sclerotiorum through machine learning and statistical methods. Plant Pathology 73(6): 1586-1601.
Rohlf, F.J. 2009. NTSYSpc: Numerical taxonomy system (Version 2.2). Exeter Software, Setauket, NY, USA.
Saharan, G.S. and Mehta, N. 2008. Sclerotinia Diseases of Crop Plants: Biology, Ecology and Disease Management. Springer Science + Business Media B.V., Amsterdam.
Sambrook, J. and Russel, D.W. 2001. Molecular Cloning: a Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
Schafer, M.R. and Kohn, L.M. 2006. An optimized method for mycelial compatibility testing in Sclerotinia sclerotiorum. Mycologia 98(4): 593-597. https://doi.org/10.3852/mycologia.98.4.593.
Sexton, A.C. and Howlett, B.J. 2004. Microsatellite markers reveal genetic differentiation among populations of Sclerotinia sclerotiorum from Australian canola fields. Current Genetics 46(6):357-65.
Silva, R.A., Ferro, C.G., Lehner, M., Jr, T.J.P. and Mizubuti, E.S.G. 2021. The population of Sclerotinia sclerotiorum in Brazil is structured by mycelial compatibility groups. Plant Disease 105: 3376-3384.
Sirjusingh, C. and Kohn, L.M. 2001. Characterization of microsatellites in the fungal plant pathogen, Sclerotinia sclerotiorum. Molecular Ecology Notes 1(4): 267–269. https://doi.org/10.1046/j.1471-8278.2001.00102.x.
Tóthová, M., Máčajová, P. and Tóth, P. 2021. Mycelial incompatibility of Sclerotinia sclerotiorum isolates from a single rapeseed field in Slovakia. Journal of Microbiology, Biotechnology and Food Sciences 11(2). https://doi.org/10.15414/jmbfs.3369.
Tok, F.M., Derviş, S. and Arslan, M. 2016. Analysis of genetic diversity of Sclerotinia sclerotiorum from eggplant by mycelial compatibility, random amplification of polymorphic DNA (RAPD) and simple sequence repeat (SSR) analyses. Biotechnology and Biotechnological Equipment 30(5): 921_928.
Xu, D.F., Li, X.L., Pan, Y.M., Dai, Y.L., Li, P., Chen, F.X., Zhang, H.J., Guo, M. and Gao, Z.M. 2014. Genetic diversity and pathogenicity differentiation of Sclerotinia sclerotiorum on rapeseed (Brassica napus L.) in Anhui Province, China. Genetics and Molecular Research 13(4): 10704-10713. https://doi.org/10.4238/2014.december.18.12.
Yu, Y., Cai, J., Ma, L., Huang, Z., Wang, Y., Fang, A., Yang, Y., Qing, L. and Bi, C. 2020. Population structure and agressiveness of Sclerotinia sclerotiorum from rapeseed (Brassica napus) in Chongqing City. Plant Disease 104: 1201-1206.