تعیین الگوی فنوتیپی و ژنوتیپی مقاومت آنتیبیوتیکی در ایزوله های اشریشیا کلی یوروپاتوژن جداشده از بیماران دیابتی در شهرستان شهرکرد
محورهای موضوعی : میکروبیولوژیفاطمه خداوردی پور 1 , امین روزبهی 2
1 - گروه میکروبیولوژی، دانشکده علوم،واحد شهرکرد، دانشگاه آزاد اسلامی،شهرکرد، ایران
2 - گروه میکروبیولوژی، دانشکده علوم پایه، واحد شهرکرد، دانشگاه آزاد اسلامي، شهرکرد، ايران
کلید واژه: اشریشیا کلی یوروپاتوژنیک, الگوی فنوتیپی, بیماران دیابتی, مقاومت آنتیبیوتیکی,
چکیده مقاله :
مقدمه : جلوگيري از انتشار مقاومتهاي دارويي يكي از مسائل مهم در جامعه است. اشریشیا کلی یکی از شایع ترین عوامل باکتریایی جداشده از عفونتهای ادراری و بیمارستانی میباشد. درمان عفونتهای ناشی از آن بدلیل کسب ژنهای مقاومت مشکل است. هدف از این مطالعه بررسی الگوی فنوتیپی و ژنوتیپی مقاومت آنتیبیوتیکی در سویههای بالینی اوروپاتوژنیک جداشده از بیماران دیابتی بود. مواد و روشها: در این مطالعه 51 ایزوله بالینی اشریشیا کلی از بیماران دیابتی مراجعهکننده به آزمایشگاههای تشخیص طبی موردبررسی قرار گرفت. تایید ایزوله ها با استفاده از روشهای بیوشیمیایی و مولکولی بر اساس ردیابی ژن 16srRNA و مقاومت آنتیبیوتیکی ایزولهها با روش دیسک دیفیوژن و بررسی مولکولی ژن¬های مقاومت (qnr،tet A، tet B, aac (3)IIa و sul1 ) انجام شد. یافته¬ها: بیشترین مقاومت نسبت به آمپی سیلین (66/66 درصد) و کمترین مقاومت نسبت به نیتروفورانتئین (96/1درصد) گزارش گردید. فراوانی ژنهای tet A، tet B،qnr ، sul 1 و aac (3)IIa به ترتیب 62/68 ، 7/64، 41/29، 21/39و 41/29 درصد گزارش گردید. در تجزیه و تحلیل آماری بین مقاومت به آنتیبیوتیک تتراسایکلین و ژنهای tet A، tet B ارتباط آماری معنی دار مشاهده گردید. بحث: تشخيص به موقع سويههاي مقاوم در انتخاب درمان مناسب و جلوگيري از گسترش مقاومت، ضروري است. پیشنهاد میشود،بدلیل اهمیت درمان عفونتهاي ادراري، درمان با توجه به الگوي حساسیت و مقاومت منطقه صورت گیرد تا از ایجاد مقاومت دارویی و شکستهاي درماني که منجر به عارضه دارشدن عفونت میگردد، جلوگیري شود.
Introduction: Preventing the spread of drug resistance is one of the most important issues in society. Escherichia coli is one of the most common bacterial agents isolated from the urinary tract and nosocomial infections. Treatment of infections due to it is difficult due to the acquisition of resistance genes. This study aimed to investigate the phenotypic and genotypic pattern of antibiotic resistance in clinical uropathogenic strains isolated from diabetic patients. Materials and methods: A total of 51 E. coli isolates from urinary tract infection in diabetic patients obtained from clinical, were used in this study. Isolates were confirmed by chemical tests and molecular techniques based on tracking of the 16srRNA gene. Antimicrobial resistance assessment of isolates was done using molecular methods base on (qnrA, tet A, tet B, aac (3)IIa, sul1) and disk diffusion. Results: Most resistance r to ampicillin (66.66%) and the lowest resistance to Nitrofurantoin (1.96%) were reported. The frequency of tet A, tet B, qnr A, sul 1 and aac (3) IIa genes reported 68.62%, 64.7%, 29.41%, 39.21%, and 29.41% respectively. The statistical analysis shows a significant relationship between resistance to the antibiotic tetracycline and the gene tet A, tet B statistically. Conclusion: Early detection of resistant strains to select the most appropriate treatment options is essential to prevent the spread of resistance. It is suggested, as treatment for urinary tract infections is important, so to prevent drug resistance and treatment failure, it should be done according to the resistance pattern in the region.
1. Demirci M, Ünlü Ö, Tosun Aİ. Detection of O25b-ST131 clone, CTX-M-1 and CTX-M-15 genes via real-time PCR in Escherichia coli strains in patients with UTIs obtained from a university hospital in Istanbul. J Infect Public Health 2019; 12(5):640–644.
2. Xia P, Zou Y, Wang Y, Song Y, Liu W, Francis DH, Zhu G. Receptor for the F4 mbriae of enterotoxigenic Escherichia coli (ETEC). Appl Microbiol Biotechnol. 2015; 99:4953–9.
3. Hassan Mumtaz. Fatemeh Reisi 2, Zahra Bamzadeh. Molecular typing of uropathogenic Escherichia coli strains (UPEC) in the province Isfahan and Genetic classification of O25 serogroup isolates by ERIC-PCR method. Journal of Applied Biology. 2019; 9(1).31-42.
4. Maiese K, New insights for oxidative stress and diabetes mellitus. Oxidative Medicine and Cellular Longevity. 2015; 2015: 1-17
5. AsmatU, Abad K, Ismail K, Diabetes mellitus and oxidative stress -A concise review. Saudi Pharm J., 2016; 24(5): 547-553.
6. Szablewski L, Sulima A, The structural and functionalchanges of blood cells and molecular components indiabetes mellitus. Biol Chem., 2017; 398(4): 411-423.
7. Fünfstück R, Nicolle LE, Hanefeld M, Naber KG, Urinary tract infection in patients with diabetes mellitus. Clin Nephrol., 2012; 77(1): 40-48.
8. Wang MC, Tseng CC, Wu AB, Lin WH, Teng CH, Yan JJ, Wu JJ, Bacterial characteristics and glycemiccontrol in diabetic patients with Escherichia coliurinary tract infection. J Microbiol Immunol Infect., 2013; 46(1): 24-29.
9. Zaha DC, Jurca CM, Daina LG, Vesa CM, Popa AR, Jurca AD. Muresan M. Micle O. Prevalence of urinary tract infection and antimicrobial susceptibily among diabetic patients farmacia; 2020, Vol. 68, 2. 20-255.
10. Erb A, Sturmer T, Marre R, Brenner H. Prevalence of antibiotic resistance in Escherichia coli: overview of geographical, temporal, and methodological variations. Eur J Clin Microbiol Infect Dis. 2007;26: 83–90.
11. Erfaneh Jafari, Mana Oloomi and Saeid Bouzari. Characterization of antimicrobial susceptibility, extended‑spectrum β‑lactamase genes and phylogenetic groups of Shigatoxin producing Escherichia coli isolated from patients with diarrhea in Iran. Annals of Clinical Microbiology and Antimicrobials; 2021: 20:24. .
12. Golnar Rahimzadeh1, Mohammad Sadegh Rezai2, Elaheh Ahmad. Lytic Activity of Isolated Phage from Milk Against Extended-Spectrum Beta-LactamaseEscherichia col. Journal of Mazandaran University of Medical Sciences JMUMS; 2021: 192. 139-144 (In persion)
13. Alonso, C.A.; Zarazaga, M.; Ben Sallem, R.; Jouini, A.; Ben Slama, K.; Torres, C. Antibiotic resistance inEscherichia coliinhusbandry animals: The African perspective.Lett. Appl. Microbiol; 2017: 64, 318–334.
14. Yusser Mahmoud Ragheb, Ali Hazim Abdulkarim. Phenotypic and Genotypic Detection Ampc β-Lactmase Producing E.coli Isolated from UTI in Anbar Governate. Annals of R.S.C.B; 2021: 25 (4): 1181 – 1192
15. Kerrn MB, Klemmensen T, Frimodt Møller N, Espersen F. Susceptibility of Danish Escherichia coli strains isolated from urinary tract infections and bacteraemia, and distribution of sul genes conferring sulphonamide resistance. J Antimicrob Chemother; 2002: 50, 513–51.
16. Mohammadi J, Amini K. Detection of Virulence Genes in Uropathogenic E. coli (UPEC) Strains byMultiplex-PCR Method. Journal of Fasa University of Medical Sciences; 2017: 7(1). 128-133.
17. National Committee for Clinical Laboratory Standards (NCCLS): Methods for disk antimicrobial susceptibility tests for bacteria that grow aerobically. Approved standard M7-A5. Wayne, Pa: 2003.
18. Maynard C, Bekal S, Sanschagrin F, Levesque RC, Brousseau R, Masson L, Larivière S, Harel J. Heterogeneity among virulence and antimicrobial resistance gene profiles of extra intestinal Escherichia coli isolates of animal and human origin. J Clin Microbiol.; 2004: 42 (12):5444-52.
19. Soleimani-Asl Y, Zibaei M, Firoozeh F. Detection of qnrA gene among quinolone-resistant Escherichia coli isolated from urinary tract infections in Khorram Abad during. 2011-2012; Feyz. 17(5): 488-495.
20. Akbari-Nakhjavani F, Mirsalehi A, Hamidian M, Kazemi B, Mirafshar M, Jabal Ameli F. Antimicrobial susceptibility testing of Escherichia coli strains isolated from urinary tract infections to fluoroquinolones and detection of gyrA mutations in resistant strains. Daru; 2007: 15(2): 94-9.
21. Mohajeri P, Izadi B, Rezai M, Falahi B, Khademi H, Ebrahimi R. Assessment of the frequency of Extended Spectrum Beta Lactamases Producing Escherichia coli Isolated from urinary tract infections and its antibiotic resistance pattern in Kermanshah. J Ardabil Univ Med Sci; 2011: 11(1):86-94.
22. Farshad Sh Ranjbar R, Anvarinejad M, Shahidi M, Hosseini M. Emergence of Multi Drug Resistant Strains of Eschetichia coli isolated from Urinary Tract Infection. The Open Conference Proceedings Journal; 2010: 1(4): 192-196
23. Mobasher Kare Jeddi AR, Nahaei MR, Mobayyen H, Pornour M, Sadeghi J. Molecular study of extended-spectrum beta-lactamase (SHV type) in Esherichia coli and Klebsiella pneumoniae isolated from Medical Centers of Tabriz. Iranian J Med Microbiol; 2008: 2(3):9-17.
24. Nakhai Moghaddam M, Musharraf Sh. Determining the pattern of antibiotic resistance of Escherichia coli urinary isolates and the prevalence of broad-spectrum beta-lactamases among them. Journal of Sabzevar University of Medical Sciences and Health Services; 2009; 4, 223-228. (In persion).
25. Sanchez GV, Master RN, Karlowsky JA, Bordon JM. In vitro antimicrobial resistance of urinary Escherichia coli isolates among U.S. outpatients from 2000 to 2010. Antimicrob Agents Chemother; 2012: 56(4):2181-2183.
26. Kausar J, Afia Z, Rumina H. Frequency and sensitivity pattern of extended spectrum beta lactamases – producing isolates in a tertiary care hospital laboratory of Pakistan. Pub Med Assoe; 2005: 55(10):436-439.
27. . Poole K. Resistanc to β– lactam antibiotic, cell Mol life; 2004: 61(17):2200 –2223.
28. Nazik H, Bektore B, Ongen B, Ozuyrt M, Baylan O, Haznedaroglu T. Co-expression of plasmid-mediated quinolone resistance-qnrA1 and blaVEB1 gene in Providensia staturii strain. New Microbiol; 2011: 34(2): 225-228.
29. Okten CA, Gales AC, Tognim MC, Munerato P, Dalla Costa LM. Quinolone-resistant clinical Escherchia coli. Braz J Infect Dis.; 2008: 12(1): 5-9.
30. Muhammad I, Uzma M, Yasmin B, Mehmood Q, Habib B. Prevalence of antimicrobial resistance and integrons in Escherichia coli from Punjab, Pakistan. Braz J Microbiol.; 2011: 42(3): 462-466.
31. . Karlowsky JA, Hoban DJ, Decorby MR, Laing M L, Zhanel GG. Flouroquinolone resistant urinary isolates of Escherichia coli from outpatient are frequently multidrug resistant: result from the North American urinary tract infection collaborative alliance-quinolone resistance study. Antimicrob Agents Chemother; 2006: 50(6): 2251-2254.
32. Pereira AS, Andrare SS, Montero J, Sader HS, Pignatary ACC, Gales AC. Evaluation of the susceptibility profiles, genetic similarity and present of qnr genes in Escherichia coli resistant to ciprofloxacin isolated in Brazilian hospitals. Braz J Infect Dis.;2007: 11(1): 40-43.
33. Momeni Mofrad S, Goodarzi Gh, Shakib P, Nowruzi c. Frequency of aac (3) -IIa gene in clinical isolates of Escherichia coli isolated from patients with urinary tract infections in Delfan city of Lorestan in 2010. Iranian Journal of Medical Microbiology; 2013: 7 (2): 26-20. (In persion)
34. Japoni A, Goudarzi M, Farshad Sh, Basiri E, Ziyaeyan M, et al. Assay for integrons and pattern of antibiotic resistance in clinical Escherichia coli strains by PCR-RFLP in southern Iran. Jpn J Infect Dis; 2008: 61(1):85-8.
35. Carattioli A. Resistance plasmide families in Enterobacteriaceae. J Antimicrob Chemother. 2009: 53: 2227-2238.
36. Mulvey M, Simor A. Antimicrobial resistance in hospitals: How concerned should we be? CMAJ; 2009: 180: 408-415.
37. Bean DC, Livemore D, Hall LM. E.coli implications for Plasmids imparting sulfonamide resistance in persistence. Antimicrob Agents Chemother; 2009: 53 (5): 1088-1093
38. Al-Agamy M. Molecular resistance mechanisms to older antimicrobial agents in Escherichia coli isolates. J African Microbiol; 2012: 6: 106-111.
39. Hammerum A, Sandvaye D, Andersen SR. Detection of sul1, sul2, sul3, in sulfonamide resistant Escherichia coli isolates obtained from healthy humans pork and pigs in Denmark. Int J Food Microbiol; 2006: 106 (4): 235-239.