اثر تمرینات هوازی بر میتوفاژی میتوکندریایی
محورهای موضوعی : میکروبیولوژیفرانک امینی 1 , محمدعلی آذربایجانی 2 , شاهین ریاحی 3 , لیدا مرادی 4
1 -
2 - 2- گروه فیزیولوژی ورزشی، واحد تهران مرکزی، دانشگاه آزاد اسلامی
3 - 3- گروه فیزیولوژی ورزشی، واحد تهران شرق، دانشگاه آزاد اسلامی، تهران ، ایران
4 - گروه فیزیولوژی ورزشی، واحد تهران شمال، دانشگاه آزاد اسلامی، تهران ، ایران
کلید واژه: میتوفاژی, تمرینات هوازی, فشار اکسایشی, التهاب, آپوپتوز,
چکیده مقاله :
میتوکندری یکی از اندامک های پویای سلولی بوده که اختلال در عملکردش موجب تضعیف عملکرد سلول و در نهایت مرگ سلولی می گردد. میتوفاژی اتوفاژی انتخابی میتوکندری های آسیب بوده که به واسطه حذف میتوکندری های ناکارآمد موجب بهبود عملکرد های بیولوژیک سلولی می گردد. مسیر سیگنالینگ PINK1–Parkinاز مهمترین مسیر های تنظیم میتوفاژی می باشد. اختلال در میتوفاژی دلیل اصلی بسیاری از بیماری های متابولیک، نورودیژنریتیو، سرطان ها و سالمندی می باشد. شواهد به دست آمده از مطالعات انسانی و حیوانی نشان می دهد تمرینات هوازی به واسطه تنظیم و فعال سازی مسیرهای سیگنالینگ، میتوفاژی میتوکندریایی را توسعه داده و موجب حفظ سلامتی در سطح سلول و به دنبال آن کاهش بروز بیماری ها می گردد. هرچند مکانیسم مولکولی دقیق اثر تمرینات هوازی در توسعه میتوفاژی میتوکندریایی مشخص نیست، اما نتایج مطالعه متعدد نشان می دهد کاهش فشار اکسایشی، التهاب، آپوپتوز و افزایش مایوکاین های ضد التهاب همراه با تمرینات هوازی منظم با فعال سازی مسیرهای سیگنالینگ میتوفاژیک به ویژه مسیر سیگنالینگ PINK1–Parkin، میتوفاژی را در بافتهای گوناگون و در شرایط سالمندی، چاقی، بی تحرکی و اختلالات متابولیک تنظیم نموده و از توسعه بیماری های متعدد جلوگیری می نماید. نقش تنظیمی تمرینات هوازی بر میتوفاژی تاکید کننده کارایی این تمرینات بر محافظت بافتی و توسعه سلامتی می باشد.
Mitochondria is one of the dynamic organelles in the cell, the dysfunction of which weakens the function of the cell and ultimately causes cell death. Mitophagy is the selective autophagy of damaged mitochondria, which improves cell biological functions by removing dysfunctional mitochondria. The PINK1-Parkin signaling pathway is one of the most important mitophagy regulation pathways. The PINK1-Parkin signaling pathway is one of the most important mitophagy regulation pathways. Disruption of mitophagy is the main cause of many metabolic, neurodegenerative diseases, cancers and aging. The evidence obtained from human and animal studies shows that aerobic exercise develops mitochondrial mitophagy by regulating and activating signaling pathways and maintains health at the cell level, thereby reducing the incidence of diseases. Although the exact molecular mechanism of the effect of aerobic exercise on the development of mitochondrial mitophagy is not known, the results of several studies show a reduction in oxidative stress, inflammation, apoptosis, and an increase in anti-inflammatory myokines along with regular aerobic exercise by activating mitophagic signaling pathways, especially the PINK1 signaling pathway. -Parkin regulates mitophagy in various tissues and in the conditions of old age, obesity, inactivity and metabolic disorders and prevents the development of many diseases. The regulatory role of aerobic exercises on mitophagy emphasizes the effectiveness of these exercises on tissue protection and health development.
1- Martínez-Reyes I., Chandel N.S. Mitochondrial TCA Cycle Metabolites Control Physiology and Disease. Nat. Commun. 2020;11:102.
2- Smith R.L., Soeters M.R., Wust R.C.I., Houtkooper R.H. Metabolic flexibility as an adaptation to energy resources and requirements in health and disease. Endocr. Rev. 2018;39:489–517.
3- Doblado L, Lueck C, Rey C, Samhan-Arias AK, Prieto I, Stacchiotti A, Monsalve M. Mitophagy in Human Diseases. Int J Mol Sci. 2021 Apr 9;22(8):3903.
4- Kim I., Rodriguez-Enriquez S., Lemasters J.J. Selective Degradation of Mitochondria by Mitophagy. Arch. Biochem. Biophys. 2007;462:245–253.
5- Bakula D., Scheibye-Knudsen M. Mitoph Aging: Mitophagy in Aging and Disease. Front. Cell Dev. Biol. 2020;8
6- He W, Wang P, Chen Q, Li C. Exercise enhances mitochondrial fission and mitophagy to improve myopathy following critical limb ischemia in elderly mice via the PGC1a/FNDC5/irisin pathway. Skelet Muscle. 2020 Sep 15;10(1):25.
7- Zhang Y, Oliveira AN, Hood DA. The intersection of exercise and aging on mitochondrial protein quality control. Exp Gerontol. 2020 Mar;131:110824.
8- Hood DA, Memme JM, Oliveira AN, Triolo M. Maintenance of Skeletal Muscle Mitochondria in Health, Exercise, and Aging. Annu Rev Physiol. 2019 Feb 10;81:19-41.
9- Wang Y, Li J, Zhang Z, Wang R, Bo H, Zhang Y. Exercise Improves the Coordination of the Mitochondrial Unfolded Protein Response and Mitophagy in Aging Skeletal Muscle. Life (Basel). 2023 Apr 13;13(4):1006.
10- Guan Y., Drake J.C., Yan Z. Exercise-induced mitophagy in skeletal muscle and heart. Exerc. Sport Sci. Rev. 2019;47:151–156.
11- Sanchez A.M., Candau R., Bernardi H. Recent data on cellular component turnover: Focus on adaptations to physical exercise. Cells. 2019;8:542.
12- Balan E., Schwalm C., Naslain D., Nielens H., Francaux M., Deldicque L. Regular endurance exercise promotes fission, mitophagy, and oxidative phosphorylation in human skeletal muscle independently of age. Front. Physiol. 2019;10:1088.
13- Delaney N.F., Sharma R., Tadvalkar L., Clish C.B., Haller R.G., Mootha V.K. Metabolic profiles of exercise in patients with mcardle disease or mitochondrial myopathy. Proc. Natl. Acad. Sci. USA. 2017;114:8402–8407.
14- Liang J, Wang C, Zhang H, Huang J, Xie J, Chen N. Exercise-Induced Benefits for Alzheimer's Disease by Stimulating Mitophagy and Improving Mitochondrial Function. Front Aging Neurosci. 2021 Oct 1;13:755665.
15- Memme JM, Erlich AT, Phukan G, Hood DA. Exercise and mitochondrial health. J Physiol. 2021 Feb;599(3):803-817.
16- Tang S, Geng Y, Lin Q. The role of mitophagy in metabolic diseases and its exercise intervention. Front Physiol. 2024 Jan 29;15:1339128.
17- Palikaras K., Lionaki E., Tavernarakis N. Mechanisms of Mitophagy in Cellular Homeostasis, Physiology and Pathology. Nat. Cell Biol. 2018;20:1013–1022.
18- Zachari M., Ktistakis N.T. Mammalian Mitophagosome Formation: A Focus on the Early Signals and Steps. Front. Cell Dev. Biol. 2020;8:171.
19- Lemasters J.J. Variants of Mitochondrial Autophagy: Types 1 and 2 Mitophagy and Micromitophagy (Type 3) Redox Biol. 2014;2:749–754.
20- Um J.-H., Kim Y.Y., Finkel T., Yun J. Sensitive Measurement of Mitophagy by Flow Cytometry Using the pH-Dependent Fluorescent Reporter Mt-Keima. J. Vis. Exp. 2018;138:58099.
21- Cummins N., Götz J. Shedding light on mitophagy in neurons: What is the evidence for PINK1/Parkin mitophagy in vivo? Cell Mol. Life Sci. 2018;75:1151–1162.
22- Bakula D., Scheibye-Knudsen M. Mitoph Aging: Mitophagy in Aging and Disease. Front. Cell Dev. Biol. 2020;8
23- Zhang Y., Zhang M., Zhu W., Yu J., Wang Q., Zhang J., Cui Y., Pan X., Gao X., Sun H. Succinate Accumulation Induces Mitochondrial Reactive Oxygen Species Generation and Promotes Status Epilepticus in the Kainic Acid Rat Model. Redox Biol. 2020;28:101365.
24- Bernardini J.P., Lazarou M., Dewson G. Parkin and Mitophagy in cANCER. Oncogene. 2017;36:1315–1327.
25- Bravo-San Pedro J.M., Kroemer G., Galluzzi L. Autophagy and Mitophagy in Cardiovascular Disease. Circ. Res. 2017;120:1812–1824.
26- Gustafsson AB, Dorn GN. Evolving and expanding the roles of mitophagy as a homeostatic and pathogenic process. Physiol. Rev. 2019;99:853–892.
27- Cadenas E, Davies KJ. Mitochondrial free radical generation, oxidative stress, and aging. Free Radic. Biol. Med. 2000;29:222–230.
28- Ashrafi G, Schwarz TL. The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ. 2013;20:31–42.
29- Narendra D, Tanaka A, Suen DF, Youle RJ. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 2008;183:795–803.
30- Iorio R, Celenza G, Petricca S. Mitophagy: Molecular Mechanisms, New Concepts on Parkin Activation and the Emerging Role of AMPK/ULK1 Axis. Cells. 2021 Dec 23;11(1):30.
31- Georgakopoulos N.D., Wells G., Campanella M. The pharmacological regulation of cellular mitophagy. Nat. Chem. Biol. 2017;13:136–146. doi: 10.1038/nchembio.2287.
32- Killackey S.A., Philpott D.J., Girardin S.E. Mitophagy pathways in health and disease. J. Cell Biol. 2020;219:e202004029.
33- Youle R.J., Narendra D.P. Mechanisms of mitophagy. Nat. Rev. Mol. Cell Biol. 2011;12:9–14. doi: 10.1038/nrm3028.
34- Matsuda N., Sato S., Shiba K., Okatsu K., Saisho K., Gautier C.A., Sou Y., Saiki S., Kawajiri S., Sato F., et al. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J. Cell Biol. 2010;189:211–221.
35- Vives-Bauza C., Zhou C., Huang Y., Cui M., de Vries R.L.A., Kim J., May J., Tocilescu M.A., Liu W., Ko H.S., et al. PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc. Natl. Acad. Sci. USA. 2010;107:378–383.
36- Vargas J.N.S., Wang C., Bunker E., Hao L., Maric D., Schiavo G., Randow F., Youle R.J. Spatiotemporal Control of ULK1 Activation by NDP52 and TBK1 during Selective Autophagy. Mol. Cell. 2019;74:347–362.e6.
37- Yamano K., Kikuchi R., Kojima W., Hayashida R., Koyano F., Kawawaki J., Shoda T., Demizu Y., Naito M., Tanaka K., et al. Critical role of mitochondrial ubiquitination and the OPTN–ATG9A axis in mitophagy. J. Cell Biol. 2020;219:e201912144.
38- Wang X., Winter D., Ashrafi G., Schlehe J., Wong Y.L., Selkoe D., Rice S., Steen J., LaVoie M.J., Schwarz T.L. PINK1 and Parkin Target Miro for Phosphorylation and Degradation to Arrest Mitochondrial Motility. Cell. 2011;147:893–906.
39- Chen Y., Dorn G.W. PINK1-Phosphorylated Mitofusin 2 Is a Parkin Receptor for Culling Damaged Mitochondria. Science. 2013;340:471–475.
40- Wu H, Wang Y, Li W, Chen H, Du L, Liu D, Wang X, Xu T, Liu L, Chen Q. Deficiency of mitophagy receptor FUNDC1 impairs mitochondrial quality and aggravates dietary-induced obesity and metabolic syndrome. Autophagy. 2019 Nov;15(11):1882-1898.
41- Wang S, Zhao H, Lin S, Lv Y, Lin Y, Liu Y, Peng R, Jin H. New therapeutic directions in type II diabetes and its complications: mitochondrial dynamics. Front Endocrinol (Lausanne). 2023 Aug 21;14:1230168.
42- Wen W, Wei Y, Gao S. Functional nucleic acids for the treatment of diabetic complications. Nanoscale Adv. 2023 Aug 28;5(20):5426-5434.
43- Čater M, Križančić Bombek L. Protective Role of Mitochondrial Uncoupling Proteins against Age-Related Oxidative Stress in Type 2 Diabetes Mellitus. Antioxidants (Basel). 2022 Jul 28;11(8):1473.
44- Boeckmans J, Rombaut M, Demuyser T, Declerck B, Piérard D, Rogiers V, De Kock J, Waumans L, Magerman K, Cartuyvels R, Rummens JL, Rodrigues RM, Vanhaecke T. Infections at the nexus of metabolic-associated fatty liver disease. Arch Toxicol. 2021 Jul;95(7):2235-2253.
45- Clare K, Dillon JF, Brennan PN. Reactive Oxygen Species and Oxidative Stress in the Pathogenesis of MAFLD. J Clin Transl Hepatol. 2022 Oct 28;10(5):939-946.
46- Li AL, Lian L, Chen XN, Cai WH, Fan XB, Fan YJ, Li TT, Xie YY, Zhang JP. The role of mitochondria in myocardial damage caused by energy metabolism disorders: From mechanisms to therapeutics. Free Radic Biol Med. 2023 Nov 1;208:236-251.
47- Hwang S, Disatnik M, Mochly-Rosen D. Impaired GAPDH-induced mitophagy contributes to the pathology of Huntington’s disease. EMBO Mol. Med. 2015;7:1307–1326.
48- Palomo GM, et al. Parkin is a disease modifier in the mutant SOD1 mouse model of ALS. EMBO Mol. Med. 2018;10:e8888.
49- Lombard DB, Chua KF, Mostoslavsky R, et al DNA repair, genome stability, and aging. Cell. 2005;120(4):497–512.
50- ScialòF, Sriram A, Fernández-Ayala D, et al Mitochondrial ROS produced via reverse electron transport extend animal lifespan. Cell Metab. 2016;23(4):725–734.
51- Nijholt KT, Sánchez-Aguilera PI, Mahmoud B, Gerding A, Wolters JC, Wolters AHG, Giepmans BNG, Silljé HHW, de Boer RA, Bakker BM, Westenbrink BD. A Kinase Interacting Protein 1 regulates mitochondrial protein levels in energy metabolism and promotes mitochondrial turnover after exercise. Sci Rep. 2023 Nov 1;13(1):18822.
52- Chen YL, Ma YC, Tang J, Zhang D, Zhao Q, Liu JJ, Tang HS, Zhang JY, He GH, Zhong CH, Wu YT, Wen HR, Ma LQ, Zou CG. Physical exercise attenuates age-related muscle atrophy and exhibits anti-ageing effects via the adiponectin receptor 1 signalling. J Cachexia Sarcopenia Muscle. 2023 Aug;14(4):1789-1801.
53- Ma C, Zhao Y, Ding X, Gao B. The role of Sirt3 in the changes of skeletal muscle mitophagy induced by hypoxic training. Gen Physiol Biophys. 2022 Sep;41(5):447-455.
54- No MH, Heo JW, Yoo SZ, Kim CJ, Park DH, Kang JH, Seo DY, Han J, Kwak HB. Effects of aging and exercise training on mitochondrial function and apoptosis in the rat heart. Pflugers Arch. 2020 Feb;472(2):179-193.
55- Pan G, Zhang H, Zhu A, Lin Y, Zhang L, Ye B, Cheng J, Shen W, Jin L, Liu C, Xie Q, Chen X. Treadmill exercise attenuates cerebral ischaemic injury in rats by protecting mitochondrial function via enhancement of caveolin-1. Life Sci. 2021 Jan 1;264:118634.
56- Mikhail AI, Manta A, Ng SY, Osborne AK, Mattina SR, Mackie MR, Ljubicic V. A single dose of exercise stimulates skeletal muscle mitochondrial plasticity in myotonic dystrophy type 1. Acta Physiol (Oxf). 2023 Apr;237(4):e13943.
57- Yamauchi N, Tamai K, Kimura I, Naito A, Tokuda N, Ashida Y, Motohashi N, Aoki Y, Yamada T. High-intensity interval training in the form of isometric contraction improves fatigue resistance in dystrophin-deficient muscle. J Physiol. 2023 Jul;601(14):2917-2933.
58- Youssef L, Granet J, Marcangeli V, Dulac M, Hajj-Boutros G, Reynaud O, Buckinx F, Gaudreau P, Morais JA, Mauriège P, Gouspillou G, Noirez P, Aubertin-Leheudre M. Clinical and Biological Adaptations in Obese Older Adults Following 12-Weeks of High-Intensity Interval Training or Moderate-Intensity Continuous Training. Healthcare (Basel). 2022 Jul 20;10(7):1346.
59- Marcangeli V, Youssef L, Dulac M, Carvalho LP, Hajj-Boutros G, Reynaud O, Guegan B, Buckinx F, Gaudreau P, Morais JA, Mauriège P, Noirez P, Aubertin-Leheudre M, Gouspillou G. Impact of high-intensity interval training with or without l-citrulline on physical performance, skeletal muscle, and adipose tissue in obese older adults. J Cachexia Sarcopenia Muscle. 2022 Jun;13(3):1526-1540.
60- Han C, Lu P, Yan SZ. Effects of high-intensity interval training on mitochondrial supercomplex assembly and biogenesis, mitophagy, and the AMP-activated protein kinase pathway in the soleus muscle of aged female rats. Exp Gerontol. 2022 Feb;158:111648.
61- Stavely R, Ott LC, Sahakian L, Rashidi N, Sakkal S, Nurgali K. Oxidative Stress and Neural Dysfunction in Gastrointestinal Diseases: Can Stem Cells Offer a Solution? Stem Cells Transl Med. 2023 Dec 18;12(12):801-810.
62- Zhao D, Sun Y, Tan Y, Zhang Z, Hou Z, Gao C, Feng P, Zhang X, Yi W, Gao F. Short-Duration Swimming Exercise after Myocardial Infarction Attenuates Cardiac Dysfunction and Regulates Mitochondrial Quality Control in Aged Mice. Oxid Med Cell Longev. 2018 Apr 11;2018:4079041.
63- Li H, Qin S, Liang Q, Xi Y, Bo W, Cai M, Tian Z. Exercise Training Enhances Myocardial Mitophagy and Improves Cardiac Function via Irisin/FNDC5-PINK1/Parkin Pathway in MI Mice. Biomedicines. 2021 Jun 21;9(6):701.
64- He W, Wang P, Chen Q, Li C. Exercise enhances mitochondrial fission and mitophagy to improve myopathy following critical limb ischemia in elderly mice via the PGC1a/FNDC5/irisin pathway. Skelet Muscle. 2020 Sep 15;10(1):25.
65- Kaur B, Sharma PK, Chatterjee B, Bissa B, Nattarayan V, Ramasamy S, Bhat A, Lal M, Samaddar S, Banerjee S, Roy SS. Defective quality control autophagy in Hyperhomocysteinemia promotes ER stress and consequent neuronal apoptosis through proteotoxicity. Cell Commun Signal. 2023 Sep 25;21(1):258.
66- Dun Y, Hu Z, You B, Du Y, Zeng L, Zhao Y, Liu Y, Wu S, Cui N, Yang F, Liu S. Exercise prevents fatal stress-induced myocardial injury in obese mice. Front Endocrinol (Lausanne). 2023 Aug 29;14:1223423.
67- Ma L, Li K, Wei W, Zhou J, Li Z, Zhang T, Wangsun Y, Tian F, Dong Q, Zhang H, Xing W. Exercise protects aged mice against coronary endothelial senescence via FUNDC1-dependent mitophagy. Redox Biol. 2023 Jun;62:102693.
68- Bal NB, Bostanci A, Sadi G, Dönmez MO, Uludag MO, Demirel-Yilmaz E. Resveratrol and regular exercise may attenuate hypertension-induced cardiac dysfunction through modulation of cellular stress responses. Life Sci. 2022 May 1;296:120424