تأثیر افزودن اکسید گرافن بر رفتار خواص تریبولوژی پوششهای ایجاد شده روی آلیاژ منیزیم AZ31 به روش اکسیداسیون الکترولیتی پلاسما
محورهای موضوعی : بیوموادصادق اسماعیلی 1 , تهمینه احمدی 2 , حمیدرضا بخششی راد 3 , امیرعباس نوربخش 4
1 - دانشجویی دکترای مهندسی مواد، دانشکده مهندسی مواد، واحد شهرضا، دانشگاه آزاد اسلامی، شهرضا، ایران
2 - استادیار، دانشکده مهندسی مواد، واحد شهرضا، دانشگاه آزاد اسلامی، شهرضا، ایران.
3 - استادیار، مرکز تحقیقات مواد پیشرفته، دانشکده مهندسی مواد، واحد نجفآباد، دانشگاه آزاد اسلامی، نجفآباد، ایران
4 - دانشیار، دانشکده مهندسی مواد، واحد شهرضا، دانشگاه آزاد اسلامی، شهرضا، ایران.
کلید واژه: تخلخل, مقاومت به سایش, گرافن اکساید, اکسیداسیون پلاسمای الکترولیتی, سایش خراشان,
چکیده مقاله :
در این تحقیق تأثیر افزودن گرافن اکساید بر رفتار تربیولوژی پوشش های ایجاد شده به روش فرآیند اکسیداسیون پلاسمای الکترولیتی تحت شرایط ولتاژ ثابت مورد بررسی قرار گرفته است. عملیات پوشش دهی با شکل موج دو قطبی طی مدت 10 دقیقه بر روی سطح آلیاژ منیزیم AZ31 انجام گردید. نتایج نشان داد که مورفولوژی سطح پوشش ها دارای میکرو حفراتی مشهور به ساختار پنکیکی و دهانه آتشفشانی بر روی سطح هستند که قطر آنها با افزودن گرافن اکساید افزایش یافته است. بررسی فازی پوشش ها نشان داد که پوشش ها از فازهای اکسیدی فورستریت و پریکلاز تشکیل شده اند. مکانیزم سایش نمونه های پوشش داده شده از نوع خراشان بوده است همچنین مقاومت به سایش پوشش حاوی افزودنی گرافن اکساید افزایش یافته بهطوریکه میانگین ضریب اصطکاک برای نمونه یاد شده 10 برابر نسبت به نمونه بدون پوشش کاهش یافته است که دلیل این امر افزایش سختی می باشد. سختی نمونه حاوی گرافن اکساید حدود 5 برابر نسبت به آلیاژ منیزیم افزایش داشته است. پوشش ایجاد شده بر روی آلیاژ منیزیم میتواند آن را به کاندید مناسبی جهت کاربردهای ارتوپدی تبدیل کند.
In this study, the effect of adding graphene oxide on the terbiological behavior of coatings created by the electrolytic plasma oxidation process under constant voltage conditions has been investigated. Bipolar waveform coating operation was performed on the surface of AZ31 magnesium alloy for 10 minutes. The results showed that the surface morphology of the coatings had micro-cavities known as pancake structure and volcanic crater on the surface, the diameter of which increased with the addition of graphene oxide. Fuzzy analysis of coatings showed that the coatings are composed of oxide phases of forsterite and periclase. The wear mechanism of the coated samples was scratched. Also, the wear resistance of the coating containing graphene oxide additive increased so that the average coefficient of friction for the mentioned samples decreased 10 times compared to the uncoated sample, which is due to the increase in hardness. The hardness of the sample containing graphene oxide has increased about 5 times compared to the magnesium alloy. Magnesium alloy with this coating is a good candidate for orthopedic applications.
[1] R. G. Hu, S. Zhang, J. F. Bu, C.J. Lin & G. L. Song, "Recent progress in corrosion protection of magnesium alloys by organic coatings," Progress in Organic Coatings, vol. 73, 2012.
[2] ا. صیفوری، ش. میردامادی، ع. خاوندی و م. یزدانی، "بررسی رفتار زیست تخریبی و ترشوندگی پوششهای سیلیکاتی ایجاد شده بر روی آلیاژ منیزیم AZ31 به روش اکسیداسیون ریزجرقه"، فصلنامه علمی و پژوهشی فرآیندهای نوین در مهندسی مواد، شماره سوم، پاییز 1392.
[3] J. Yang, F. Cui & I. S. Lee, "Surface modifications of magnesium alloys for biomedical applications," Annals of Biomedical Engineering, vol. 39, 2011.
[4] Q. Chen & et al., "Influence of graphene particles on the micro-arc oxidation behaviors of 6063 aluminum alloy and the coating properties", Applied Surface Science, vol. 423, 2017.
[5] K. J. Ma, M. M. S. Al Bosta & W. T. Wu, "Preparation of self-lubricating composite coatings through a micro-arc plasma oxidation with graphite in electrolyte solution", Surface and Coatings Technology, vol. 259, 2014.
[6] ا. دانشپژوه، آ. زارع بیدکی و م. حاجی صفری، "بررسی تأثیر زمان فرآیند اکسیداسیون الکترولیتی پلاسمایی بر رفتار خوردگی آلیاژ Ti-13Nb-13Zr در محلول رینگر هوازدایی شده"، فصلنامه علمی و پژوهشی فرآیندهای نوین در مهندسی مواد، شماره دوم، 1396.
[7] B. S. Lou & et al., "Plasma electrolytic oxidation coatings on AZ31 magnesium alloys with Si3N4 nanoparticle additives", Surface and Coatings Technology, vol. 332, 2017.
[8] م. علیاف خضرایی، ر. بخشی، م. ح. مرادی و ع. صبور روحاقدم، "پوششهای اکسیدی نانو ساختار"، فدک ایساتیس، تهران، 1394.
[9] Y. Zhang & et al., "Influence of graphene oxide on the antiwear and antifriction performance of MAO coating fabricated on MgLi alloy", Surface and Coatings Technology, vol. 364, 2019.
[10] V. O. Fasiku, S. J. Owonubi, E. Mukwevho, B. A. Aderibigbe, Y. Lemmer, Revaprasadu Neerish & E. R. Sadiku, "Graphene-Based Materials for Implants", Wiley Online Library, Handbook of Graphene Set, I-VIII, Chapter 5, 2019.
[11] C. Wen & et al., "Characterization and corrosion properties of hydroxyapatite/grapheme oxide bio-composite coating on magnesium alloy by one-step micro-arc oxidation method", Surface and Coatings Technology, vol. 317, 2017.
[12] ح. شریفی، م. علیاف خضرایی، ا. عرفانیفر و ع. صبور روح القدم، "بررسی مورفولوژی و خواص خوردگی پوششهای نانوکامپوزیتی اکسیـداسیون پـلاسمایی الکترولیتی تشکیل شده در الکترولیت حاوی پنیسیلین بر روی تیتانیوم"، علوم و مهندسی خوردگی، شماره 7، پاییز 1394.
[13] ح. بختیاریزمانی، ا. صائبنوری، س. ع. حسنزاده تبریزی و ف. سلحشوری، " بررسی اثر عملیات نیتروژندهی گازی بر ریخت و رفتار سایشی پوشش TiO2 ایجادشده به روش اکسایش الکترولیتی پلاسمایی"، علوم و مهندسی سطح، شماره 41، 1398.
[14] Q. Chen, Z. Jiang, S. H. Tang, W. Dong, Q. Tong & W. Li, "Influence of Graphene Particles on the Micro-arc Oxidation Behaviors of 6063 Aluminum Alloy and the Coating Properties", Applied Surface Science, vol. 423, 2017.
[15] Y. Zuo, T. Li, P. Yu, Z. Zhao, X. Chen, Y. Zhang & F. Chen, "Effect of graphene oxide additive on tribocorrosion behavior of MAO coatings prepared on Ti6Al4V alloy", Applied Surface Science, vol. 480, 2019.
[16] م. اصغری، ک. رئیسی و ا. حکیمیزاد، "اثر افزودن تنگستات سدیم به الکترولیت بر خواص متالورژیکی و خوردگی پوشش ایجاد شده توسط روش اکسیداسیون الکترولیتی پلاسمایی بر آلیاژ آلومینیوم 7075"، هفدهمین سمینار ملی مهندسی سطح، دانشگاه صنعتی اصفهان، بهمن 1395.
[17] Y. Zhang, F. Chen, Y. Zhang, C. Du, "Influence of graphene oxide additive on the tribological and electrochemical corrosion properties of a PEO coating prepared on AZ31 magnesium alloy", Tribology International, vol. 146, 2020.
[18] R. Kucukosman, E. E. Sukuroglu, Y. Totik & SuleymanSukuroglu, "Effects of graphene oxide addition on wear behaviour of composite coatings fabricated by plasma electrolytic oxidation (PEO) on AZ91 magnesium alloy", Journal of Adhesion Science And Technology, vol. 35, 2020.
[19] L. Liu, P. Yang, C. Su, H. Guo & M. An, "Microstructure and Corrosion Behavior of Micro-Arc Oxidation Film on Magnesium Alloy", Int. J. Electrochem. Sci., vol. 8, 2013.
[20] Sh. Wei, F. Wu, Y. Wang, A. Rabiei Baboukani, Y. Wen & J. Jiang, "Corrosion Resistance of Micro-Arc Oxidation/Graphene Oxide Composite Coatings on Magnesium Alloys", ACS Omega, vol. 5, 2020.
[21] A. Bordbar Khiabani, S. Rahimi, B. Yarmand & M. Mozafari, "Electrophoretic deposition of graphene oxide on plasma electrolytic oxidized-magnesium implants for bone tissue engineering applications", Materials Today: Proceedings, vol. 5, 2018.
[22] Z. Qiu, R. Wang, J. Wu, Y. Zhang, Y. Qu & X. Wu, "Graphene oxide as a corrosion-inhibitive coating on magnesium alloys", RSC Adv., vol. 5, 2015.
[23] T. Li, L. Li, J. Qi & F. Chen, "Corrosion protection of Ti6Al4V by a composite coating with a plasma electrolytic oxidation layer and sol-gel layer filled with graphene oxide", Progress in Organic Coatings, vol. 144, 2020.
[24] F. Chen, Y. Zhang & Y. Zhang, "Effect of Graphene on Micro-Structure and Properties of MAO Coating Prepared on Mg-Li Alloy ", Int. J. Electrochem. Sci., vol. 12, 2017.
[25] X. Chen, D. Liao, D. Zhang, X. Jiang, P. Zhao & R. Xu, "Friction and Wear Behavior of Graphene-Modified Titanium Alloy Micro-arc Oxidation Coatings", Transactions of the Indian Institute of Metals, vol. 73, 2020.
_||_