ارزیابی خواص فتوکاتالیزوری و ضد باکتری نانوکامپوزیت ZnO-CuO تولید شده به روش سل- ژل
محورهای موضوعی : سنتز موادسیده زهرا انوری 1 * , محمد حاجب 2 , محمود فاضل نجف آبادی 3
1 - استادیار، گروه مهندسی مکانیک، دانشگاه پیام نور، تهران، ایران.
2 - فارغالتحصیل کارشناسی ارشد، دانشگاه پیام نور، تهران، ایران.
3 - عضو هیئت علمی/دانشگاه پیام نور
کلید واژه: سل, ژل فتوکاتالیزوری ZnO, CuO خاصیت ضد باکتری,
چکیده مقاله :
در این تحقیق نانو ذرات CuO، ZnO و نانوکامپوزیت ZnO-CuO با روش سل ژل سنتز شد. ویژگیهای محصولات سنتز شده با استفاده از آزمونهای XRD، DRS-UV و FESEM ارزیابی شد. نتایج تجزیه و تحلیل XRD نشان داد که نانو ذرات CuO، ZnO و کامپوزیت ZnO-CuO کریستالی بوده و آمورف نیست. نتایج تجزیه و تحلیل DRS-UV نشان داد که به ترتیب CuO، ZnO و نانوکامپوزیت ZnO-CuO دارای متوسط انرژی شکاف باند 27/1 و 21/3 و 43/2 الکترون ولت هستند. محاسبات نشان داد ترکیبات CuO و ZnO و کامپوزیت ZnO–CuO در اثر تابش نور میتواند به ترتیب 40، 10 و 68% از آلایندهی رنگی رودامین B را تخریب نماید؛ بنابراین کامپوزیت نمودن ZnO با CuO سبب افزایش فعالیت فتوکاتالیزوری محصولات شد. همچنین مکانیسم فعالیت فتوکاتالیزوری محصولات سنتز شده و نقش اکسید مس در افزایش بازه فرآیند فتوکاتالیزوری مورد بحث قرار گرفته است. ارزیابی خواص ضد باکتری نشان داد نانو کامپوزیت ZnO-CuO دارای توانایی ضد باکتریایی علیه استافیلوکوکوس آرئوس بهعنوان باکتری گرم مثبت و اشریشیاکلی بهعنوان باکتری گرم منفی است.
In this research CuO and ZnO and CuO-ZnO nanocomposites were synthesized using sol- gel method. The samples were characterized by DRS-UV, X-ray diffraction (XRD), and field emission scanning electron microscopy (FESEM). The results of XRD showed that the CuO and ZnO and ZnO-CuO composite are crystalline. The results of the DRS-UV analysis showed that the CuO, ZnO, and ZnO-CuO composite, respectively, have a mean band gap of 1.27 and 3.21 and 2.43 eV. According to calculations CuO, ZnO and ZnO-CuO composite show 40, 10 and 68% of degradation efficiency against of rhodamine B dye, respectively. Therefore, the addition of CuO to ZnO increased the photocatalytic activity of the products. The mechanism of photocatalytic activity of synthetic products and copper oxide is discussed in the process of increasing the photocatalytic process intervals. ZnO-CuO nanocomposite has an antibacterial ability against Staphylococcus aureus as a positive bacterium and E. coli as a negative bacterium.
[1] S. Banerjee, S. C. Pillai, P. Falaras, K. E. O’Shea, J. A. Byrne & D. D. Dionysiou, "New insights into the mechanism of visible light photocatalysis", J. Phys. Chem. Lett. vol. 5, pp. 2543–255, 2014.
[2] T. Tachikawa, M. Fujitsuka, & T. Majima, "Mechanistic Insight into the TiO2 Photocatalytic Reactions: Design of New Photocatalysts", J. Physic. Chem. C, vol. 111, pp. 5259–5275, 2007.
[3] H. R. Ebrahimi, M. Modrek & S. Joohari, "Photodecolorization of direct yellow 86 (2-Solamine) by using zinc oxide nanosized deposited on glass beads", Indian Journal of Science and Technology, vol. 5, pp. 1828-1830, 2012.
[4] H. R. Ebrahimi, M. Modrek & S. Joohari, "Photodegradation of methyl orange dye by using zinc oxide nano-sized catalysts on glass granules at various pH values and different atmosphere", Fresenius Environmental Bulletin, vol. 23, pp. 1155-1158, 2014.
[5] A. Muzakki, H. Shabrany & S. Rosari, "Synthesis of ZnO/CuO and TiO2/CuO nanocomposites for light and ultrasound assisted degradation of a textile dye in aqueous solution", AIP Conference Proceedings, vol. 1725, pp. 020051, 2016.
[6] م. امساکی، س. ع. حسنزاده تبریزی و ع. صفارتلوری، "سنتز و بررسی خواص فوتوکاتالیستی نانوذرات ZnO در اثر افزودن ZnWO4"، فرآیندهای نوین در مهندسی مواد، سال 13، شماره 4، 1398.
[7] ح. یوسفی و ب. هاشمی، "سنتز نانوذرات اکسید روی دوپ شده توسط نقره به روش سل-ژل پکینی و مشخصه یابی و بررسی خواص فوتوکاتالیستی آنها"، فرآیندهای نوین در مهندسی مواد، سال 12، شماره 4، 1397.
[8] W. Buhro & V. Colvin, "Semiconductor nanocrystals: Shape matters", Nat. Mater, vol. 2, pp. 138–139, 2003.
[9] A. A. Dubale, Ch. J. Pan, A. G. Tamirat, H. M. Chen, W. N. Su, Ch. H. Chen, J. Rick, D. W. Ayele, B. A. Aragaw, J. F. Lee, Y. W. Yangand & B. J. Hwang, "Heterostructured Cu2O/CuO decorated with nickel as a highly efficient photocathode for photoelectrochemical water reduction", J. Mater. Chem. A, vol. 23, pp. 12482-12499, 2015.
[10] S. Ruhle, M. Shalom & A. Zaban, "Quantum‐Dot‐Sensitized Solar Cells", Chem. Phys. Chem, vol. 11, pp. 2290–2304, 2010.
[11] A. Lebedev, F. Anariba, J. Ch. Tan, X. Li & P. Wu, "A review of physiochemical and photocatalytic properties of metal oxides against Escherichia coli", Journal of Photochemistry and Photobiology A: Chemistry, vol. 360, pp. 306-315, 2018.
[12] D. M. Fernandes, R. Silva, A. A. Winkler Hechenleitner, E. Radovanovic, M. A. Custodio Melo & E. A. Gomez Pineda, "Synthesis and characterization of ZnO, CuO and a mixed Zn and Cu oxide", Materials Chemistry and Physics, vol. 115, pp. 110–115, 2009.
[13] H. R. Ebrahimi, F. Kazemipour-Baravati & H. Bagheri, "Synthesize of ZnO/NPs and Investigation of Its Effect in Reduction of Electrochemical Charge Transfer Resistance; Application of It for Photodecomposition of Calcon (C.I.15705) Dye in Various Media", Int. J. Electrochem. Sci, vol. 9, pp. 1738-1746, 2014.
[14] H. R. Ebrahimi & M. Modrek, "Photocatalytic Decomposition of Methyl Red Dye by Using Nanosized Zinc Oxide Deposited on Glass Beads in Various pH and Various Atmosphere", Journal of Chemistry, Hindawi Publishing Corporation, Article ID 151034, pp. 5, 2013.
[15] D. B. Hamal & K. J. Klabunde, "Synthesis, characterization, and visible light activity of new nanoparticle photocatalysts based on silver, carbon, and sulfur-doped TiO2", J. Colloid Interface Sci.
[16] T. Ardiansyah, A. Alfred & S. Rosari, "Sol-gel synthesis of ternary CuO/TiO2/ZnO nanocomposites for enhanced photocatalytic performance under UV and visible light irradiation", Journal of Photochemistry and Photobiology A: Chemistry. In Press.
[17] F. Wang, H. Li, Zh. Yuan, Y. Sun, F. Chang, H. Deng, L. Xie & H. Li, "A highly sensitive gas sensor based on CuO nanoparticles synthetized via a sol–gel method", RSC Adv. vol. 23, pp. 79343-79349, 2016.
[18] P. N. Asrami, S. A. Mozaffari, M. S. Tehrani & P. A. Azar, "A novel impedimetric glucose biosensor based on immobilized glucose oxidase on a CuO-Chitosan nanobiocomposite modified FTO electrode", Int. J. Biol. Macromolecules, vol. 118, pp. 649-660, 2018.
[19] Q. Zhang, K. Zhang, D. Xu, G. Yang & Sh. Yang, "CuO nanostructures: Synthesis, characterization, growth mechanisms, fundamental properties, and applications", Prog. Mater. Sci, vol. 60, pp. 208-337, 2014.
[20] S. Rangabhashiyam & P. Balasubramanian, "Characteristics, performances, equilibrium and kinetic modeling aspects of heavy metal removal using algae", Bioresour. Technol. Rep. vol. 5, pp. 261-279, 2019.
[21] N. Yahya, F. Aziz, N. A. Jamaludin, M. A. Mutalib, A. F. Ismail, W. N. W. Salleh, J. Jaafar, N. Yusof & N. A. Ludin, "A review of integrated photocatalyst adsorbents for wastewater treatment", Journal of environmental chemical engineering, vol. 6, no. 6, pp. 7411-7425, 2018.
[22] R. M. Allaf & L. J. Hope-Weeks, "Synthesis of Nancomposite Aerogels by the Sol-Gel Route", Journal of Nanomaterials, vol. 49, 2014.
[23] M. Giahi, N. Badalpoor, Habii & H. Taghavi, "Synthesis of CuO/ZnO Nanoparticles and Their Application for Photocatalytic Degradation of Lidocaine HCl by the Trial-and-error and Taguchi Methods Bull", Korean Chem. Soc, vol. 34, pp. 2176, 2013.
[24] H. P. Klong & L. E. Alexande, "Xray diffraction procedures for crystalline and amorphous materials", Wiley, New York, 1944.
[25] N. Gobadi, "Band gap determination using absorption spectrum fitting procedure", International Nano Letters, vol. 3, pp. 2-4, 2013.
[26] F. B. Firouzabadi, M. Noori, Y. Edalatpanah & M. Mirhosseini, "ZnO nanoparticle suspensions containing citric acid as antimicrobial to control Listeria monocytogenes, Escherichia coli", Staphylococcus aureus and Bacillus cereus in mango juice. Food Control, vol. 42, pp. 310-314, 2014.
[27] M. B. Fisher, D. A. Keane, P. Fernandez-Ibanez, J. Colreavy, S. J. Hinder, K. G. McGuigan & S. C. Pillai, "Nitrogen and copper doped solar light active TiO2 photocatalysts for water decontamination", Appl. Catal. B, vol. 130−131, pp. 8−13, 2013.
[28] M. T. Qamar, M. Aslam, I. M. I. Ismail, N. Salah & A. Hameed, "Synthesis, Characterization and Sunlight Mediated Photocatalytic Activity of CuO Coated ZnO for the Removal of Nitrophenols", ACS Appl. Mater. Interfaces, vol. 7, pp. 8757, 2015.
[29] B. Li & Y. Wang, "Facile synthesis and photocatalytic activity of ZnO-CuO nanocomposite", Superlattices Microstruc, vol. 47, pp. 615-623, 2010.
[30] A. Sirelkhatim, S. Mahmud, A. Seeni, N. H. M. Kaus, L. C. Ann, S. K. M. Bakhori, H. Hasan & D. Mohamad, "Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism", Nano-Micro Lett, vol. 7, pp. 219, 2015.
[31] G. Ma, X. Liang, L. Li, R. Qiao, D. Jiang, Y. Ding & H. Chen, "Cu-doped zinc oxide and its polythiophene composites: Preparation and antibacterial properties", Chemosphere, vol. 100, pp. 146–151, 2014.
_||_