تأثیر افزودن ZrC در فرآیند تفجوشی بدون فشار کامپوزیت هیبریدی ZrB2-SiCn/SiCm-Si3N4 بر خواص فیزیکی، مکانیکی و مکانیزم رشد ترک آن
محورهای موضوعی : سنتز موادمحمد سرهنگیان 1 , مهری مشهدی 2 *
1 - دانشجوی دکتری، مجتمع دانشگاهی مواد و فناوریهای ساخت، دانشگاه صنعتی مالک اشتر، تهران، ایران.
2 - دانشیار، مجتمع دانشگاهی مواد و فناوریهای ساخت، دانشگاه صنعتی مالک اشتر، تهران، ایران.
کلید واژه: سرامیکهای فوق دمابالا دیبوراید زیرکونیوم تفجوشی بدون فشار کاربید زیرکونیوم,
چکیده مقاله :
توجه به سرامیکهای فوق دمابالا به دلیل فناوریهای قرن بیست و یکم و تلاش برای ساخت سامانههای حفاظت حرارتی قابلاستفاده مجدد و سایر ترکیبات موردنیاز برای نسلهای آینده وسایل نقلیه هوا فضایی مافوق صوت، به میزان قابلتوجهی افزایش یافته است. در این پژوهش افزودن کاربید زیرکونیم (ZrC) بهعنوان تقویتکننده در مقادیر 5 تا 40 درصد حجمی بر رفتار خواص مکانیکی و مکانیزم رشد ترک ZrB2-SiCn/m (دارای 3 درصد حجمی سیلیکون نیترید Si3N4) موردبررسی قرار گرفت. جهت ارزیابی از سختی سنجی ویکرز، چگالی ارشمیدس و تصاویر میکروسکوپی الکترونی روبشی استفاده شد. نتـایج نشان داد؛ میزان انقباض حجمی با افزایش میزان ZrC کاهش مییابد. بالاترین افزایش چگالی نسبی نمونهها با افزایش مقدار ZrC در نمونه ZrB2-SiCn/m-30%ZrC به میزان (04/97) درصد است. با توجه به اینکه ترك نميتواند از ميان ذرات ZrC عبور کند؛ این ذرات از طريق دو سازوکار تغيير مسير ترك و پلزنی ترك باعث افزايش چقرمگي ميشوند. همچنین نمونه حاوی 30 درصد حجمی ZrC بیشترین مقدار چقرمگی شکست (MPa.M1/226/4) و سختی (GPa 3/16) را دارد.
Attention to ultrahigh temperature ceramics has increased significantly due to the advancements in 21st century technologies and efforts to develop reusable thermal protection systems and other compounds required for future generations of hypersonic aerospace vehicles. In this research, the addition of zirconium carbide (ZrC) as a reinforcement in volumes ranging from 5 to 40% was investigated for its impact on the mechanical properties and crack growth behavior of ZrB2-SiCn/m composites) with 3% silicon nitride (Si3N4) by volume) The results indicate that volumetric shrinkage decreases with increasing ZrC content. The highest relative density increase was observed in the ZrB2-SiCn/m-30%ZrC sample, with a percentage increase of 97.04%. Since cracks cannot pass through the ZrC particles, these particles increase the toughness by altering the crack path and bridging the crack. Moreover, the sample containing 30% volume fraction of ZrC exhibited the highest fracture toughness (4.26 MPa.m1/2) and hardness (16.3 GPa).
[1] S. V. Ushakov & A. Navrotsky, "Experimental approaches to the thermodynamics of ceramics above 1500 C", Journal of the American Ceramic Society, vol. 95, no. 5, pp. 1463–1482, 2012.
[2] Z. Wu, X. Liang, Z. Shao, H. Chen, J. Li & J. Wang, "Highly porous multicomponent (Hf1/3Ta1/3Nb1/3) C ultra-high temperature ceramic with low thermal conductivity", Materialia, vol. 18, p. 101158, 2021.
[3] E. Zhang, W. Zhang, T. Lv, J. Li, J. Dai, F. Zhang, Y. Zhao, J. Yang, W. Li & H. Zhang, "Insulating and robust ceramic nanorod aerogels with high-temperature resistance over 1400° C", ACS Applied Materials & Interfaces, vol. 13, no. 17, pp. 20548–20558, 2021.
[4] D. Ni, Y. Cheng, J. Zhang, J. X. Liu, J. Zou, B. Chen, H. Wu, H. Li, S. Dong & J. Han, "Advances in ultra-high temperature ceramics, composites, and coatings", Journal of Advanced Ceramics, vol. 11, pp. 1–56, 2022.
[5] B. C. Wyatt, S. K. Nemani, G. E. Hilmas, E. J. Opila & B. Anasori, "Ultra-high temperature ceramics for extreme environments", Nature Reviews Materials, pp. 1–17, 2023.
[6] A. Nisar R. Hassan, A. Agarwal & K. Balani, "Ultra-high temperature ceramics: Aspiration to overcome challenges in thermal protection systems", Ceramics International, vol. 48, no. 7, pp. 8852–8881, 2022.
[7] M. Kheyrollazadeh, Z. Balak, M. Azizieh & M. S. Asl, "Effect of TaC and graphene nanoplatelets on the microstructure and mechanical properties of ZrB2", Diamond and Related Materials, vol. 139, p. 110345, 2023.
[8] D. Hu, Q. Fu, L. Zhou, X. Li & B. Liu, "Effects of air plasma flame on the ZrB2-based UHTC coatings: Microstructure, phase evolution and ablation resistance", Journal of Materials Science & Technology, vol. 158, pp. 194–206, 2023.
[9] M. Zhang, G. Yang, L. Zhang, Y. Zhang, J. Yin, X. Ma, J. Wen, L. Dai, X. Wang & H. Chen, "Application of ZrB2 thin film as a low emissivity film at high temperature", Applied Surface Science, vol. 527, p. 146763, 2020.
[10] B. Kumar & P. Kumar, "Preparation of hybrid reinforced aluminium metal matrix composite by using ZrB2: A systematic review", Materials Today: Proceedings, vol. 61, pp. 115–120, 2022.
[11] J. A. Yeom, Y. W. Kim, W. K. Jung, D. I. Cheong & E. S. Kang "Pressureless sintering of SiC ceramics with improved specific stiffness", Journal of the European Ceramic Society, vol. 43, no. 9, pp. 3941–3949, 2023.
[12] W. Huang, J. Zhou, C. Ren, F. Zhang, J. Tang, M. Omran & G. Chen, "Sintering behaviour and properties of zirconia ceramics prepared by pressureless sintering", Ceramics International, vol. 49, no. 16, pp. 27192–27200, 2023.
[13] X. Li, L. Zhang, Y. Dong, M. Qin, Z. Wei, Z. Que, J. Yang, X. Qu & J. Li, "Towards pressureless sintering of nanocrystalline tungsten", Acta Materialia, vol. 220, p. 117344, 2021.
[14] A. Snyder, D. Quach, J. R. Groza, T. Fisher, S. Hodson & L. A. Stanciu, "Spark Plasma Sintering of ZrB2–SiC–ZrC ultra-high temperature ceramics at 1800 C", Materials Science and Engineering: A, vol. 528, no. 18, pp. 6079–6082, 2011.
[15] T. G. Aguirre, C. L. Cramer, E. Cakmak, M. J. Lance & R. A. Lowden, "Processing and microstructure of ZrB2–SiC composite prepared by reactive spark plasma sintering", Results in Materials, vol. 11, p. 100217, 2021.
[16] F. Adibpur, S. A. Tayebifard, M. Zakeri & M. S. Asl, "Spark plasma sintering of quadruplet ZrB2–SiC–ZrC–Cf composites", Ceramics International, vol. 46, no. 1, pp. 156–164, 2020.
[17] L. Silvestroni & D. Sciti, "Microstructure and properties of pressureless sintered ZrC-based materials", Journal of Materials Research, vol. 23, no. 7, pp. 1882–1889, 2008.
[18] Z. Zhao, K. Li & W. Li, "Ablation behavior of ZrC-SiC-ZrB2 and ZrC-SiC inhibited carbon/carbon composites components under ultrahigh temperature conditions", Corrosion Science, vol. 189, p. 109598, 2021.
[19] Y. Wang, G. Zhang & K. Chou, "Preparation and oxidation characteristics of ZrC-ZrB2 composite powders with different proportions", International journal of minerals, metallurgy and materials, vol. 29, no. 3, pp. 521–528, 2022.
[20] M. Tiwari, A. Singh & V. K. Singh, "The microstructural and mechanical behavior of in-situ synthesized ZrB2–ZrC and ZrB2–SiC–ZrC composites: A comparative study", Vacuum, vol. 214, p. 112199, 2023.
[21] E. W. Neuman, G. J. Harrington, G. E. Hilmas & W. G. Fahrenholtz, "Thermal conductivity of hot-pressed ZrB2-ZrC ceramics", Materialia, vol. 26, p. 101638, 2022.
[22] B. Ke, W. Ji, J. Zou, W. Wang & Z. Fu, "Densification mechanism, microstructure and mechanical properties of ZrC ceramics prepared by high-pressure spark plasma sintering", Journal of the European Ceramic Society, vol. 43(8), pp. 3053–3061, 2023.
[23] K. Cui, H. Mao, Y. Zhang, J. Wang, H. Wang, T. Tan & T. Fu, "Microstructure, mechanical properties, and reinforcement mechanism of carbide toughened ZrC-based ultra-high temperature ceramics: A review", Composite Interfaces, vol. 29, no. 7, pp. 729–748, 2022.
[24] J. Zhang & J. M. McMahon, "Temperature-dependent mechanical properties of ZrC and HfC from first principles", Journal of Materials Science, vol. 56, no. 6, pp. 4266–4279, 2021.
[25] I. Forooghi & M. Mashhadi, "Pressureless Sintering & Mechanical & Thermal Properties of ZrB2-ZrC-SiC Nanocomposite", Journal of Advanced Materials in Engineering (Esteghlal), vol. 39, no. 4, pp. 115–129, 2022.
[26] M. Sarhangian & M. Mashhadi, "The Impact of Si3N4 Incorporation on the Mechanical Characteristics of ZrB2-SiC Nanocomposite Sintered via Pressureless Method", Heliyon, 2024.
[27] Z. Nasiri & M. Mashhadi, "Investigation on microstructure, mechanical properties and pressureless sintering behavior of ZrB2-SiCnano/micron composites", 2018.
[28] M. Vivekananthan, C. Ahilan, S. Sakthivelu & M. Saravanakumar, "A primary study of density and compressive strength of the silicon nitride and titanium nitride ceramic composite", Materials Today: Proceedings, vol. 33, pp. 2741–2745, 2020.
[29] S. W. Hughes, "Measuring liquid density using Archimedes’ principle", Physics Education, vol. 41, no. 5, p. 445, 2006.
[30] L. Feng, W. G. Fahrenholtz & G. E. Hilmas, "Effect of ZrB2 content on the densification, microstructure, and mechanical properties of ZrC-SiC ceramics", Journal of the European Ceramic Society, vol. 40, no. 2, pp. 220–225, 2020.
[31] S. Li, Y. Zhu, J. Chai, Y. Liu, L. Niu, X. Gao, P. Jin, T. Shen, M. Cui & Z. Wang, "Effects of ZrC content on the microstructure and mechanical property of ZrC/ZTA composites consolidated by hot pressing", Journal of Alloys and Compounds, vol. 860, p. 158402, 2021.
[32] V. Gropyanov & L. Bel’tyukova, "Sintering and recrystallization of ZrC-ZrB 2 compacts", Soviet Powder Metallurgy and Metal Ceramics, vol. 7, pp. 527–533, 1968.
[33] Z. Yu, X. Lv, S. Lai, L. Yang, W. Lei, X. Luan & R. Riedel, "ZrC–ZrB 2–SiC ceramic nanocomposites derived from a novel single-source precursor with high ceramic yield", Journal of Advanced Ceramics, vol. 8, pp. 112–120, 2019.
[34] S. Emami, E. Salahi, M. Zakeri & S. Tayebifard, "Effect of composition on spark plasma sintering of ZrB2–SiC–ZrC nanocomposite synthesized by MASPSyn", Ceramics International, vol. 43, no. 1, pp. 111–115, 2017.
[35] B. Ke, J. Zou, W. Wang, W. Ji & Z. Fu, "Fabrication and improved properties of ZrC-SiC-ZrB2 ceramics by ultra-high pressure sintering", Journal of the European Ceramic Society, 2024.
[36] H. L. Liu, G. J. Zhang, J. X. Liu & H. Wu, "Synergetic roles of ZrC and SiC in ternary ZrB2–SiC–ZrC ceramics", Journal of the European Ceramic Society, vol. 35, no. 16, pp. 4389–4397, 2015.
[37] A. Rezapour & Z. Balak, "Fracture toughness and hardness investigation in ZrB2–SiC–ZrC composite", Materials Chemistry and Physics, vol. 241, p. 122284, 2020.
[38] Q. Y. Liu, S. K. Sun, L. Y. Zeng, Y. You, W. M. Guo, L. X. Wu & H. T. Lin, "Improvement of sinterability and mechanical properties of ZrB2 ceramics by the modified borothermal reduction methods", Journal of the European Ceramic Society, vol. 40, no. 12, pp. 3844–3850, 2020.
[39] S. N. Katea, L. Riekehr & G. Westin, "Synthesis of nano-phase ZrC by carbothermal reduction using a ZrO2–carbon nano-composite", Journal of the European Ceramic Society, vol. 41, no. 1, pp. 62–72, 2021.
[40] R. Harrison & W. Lee, "Processing and properties of ZrC, ZrN and ZrCN ceramics: a review", Advances in Applied Ceramics, vol. 115, no. 5, pp. 294–307, 2016.
[41] H. B. Ma, G. J. Zhang, H. L. Liu, J. X. Liu, Y. Lu & F. F. Xu, "Effect of WC or ZrC addition on thermal residual stresses in ZrB2SiC ceramics", Materials & Design, vol. 110, pp. 340–345, 2016.
[42] G. A. Gogotsi, "Fracture toughness of ceramics and ceramic composites", Ceramics international, vol. 29, no. 7, pp. 777–784, 2003.
[43] K. Matsui, K. Hosoi, B. Feng, H. Yoshida & Y. Ikuhara, "Ultrahigh toughness zirconia ceramics", Proceedings of the National Academy of Sciences, vol. 120, no. 27, p. e2304498120, 2023.