تحلیل کاربردهای هوش مصنوعی در مدیریت شهری با رویکرد DANP (مورد مطالعه: کلانشهر شیراز)
حسین احدی
1
(
دانشجوی کارشناسی ارشد، دانشکده مدیریت، موسسه آموزش عالی آپادانا، شیراز، ایران
)
سیما علی پور
2
(
استادیار دانشکده مدیریت، موسسه آموزش عالی آپادانا، شیرتز، ایران
)
پریسا مشکسار
3
(
استادیار گروه شهرسازی، موسسه آموزش عالی آپادانا شیراز
)
کلید واژه: کاربرد هوش مصنوعی, مدیریت شهری, رویکرد دنپ, شهر شیراز,
چکیده مقاله :
با اهمیت روزافزون فناوری در زندگی روزمره، مفهوم شهرهای هوشمند به طور فزایندهای مهم شده است و دولتها و بخش خصوصی سرمایهگذاری زیادی در پروژههای شهر هوشمند کردهاند. همچنین، به لطف رشد سریع ابتکارات شهرهای هوشمند مبتنی بر هوش مصنوعی، محققان، مقامات دولتی و متخصصان به دنبال اطلاعات و رویکردهای جدید برای هوشمندسازی شهرها هستند. لذا مطالعه حاضر با هدف شناسایی کاربردهای هوش مصنوعی در مدیریت شهری و رتبهبندی آنها انجام شده است. این پژوهش از منظر هدف کاربردی و از بعد روش از جمله تحقیقات توصیفی میباشد. عوامل کلیدی کاربردهای هوش مصنوعی در مدیریت شهری براساس مطالعات کتابخانهای شناسایی شدند و دادههای لازم جهت رتبهبندی آنها با استفاده از پرسشنامه تهیه شده مبتنی بر تکنیک بکار رفته در این پژوهش (دنپ) جمعآوری شد. جامعه خبرگان در این پژوهش 8 نفر از مدیران و مسئولان شهرداریهای شهر شیراز بودند. 13 عامل کلیدی شناسایی و در 4 گروه مدیریت بحران، مدیریت حمل و نقل، مدیریت خدمات یکپارچه و مدیریت انرژی خوشهبندی شدند. با توجه به دادهها عوامل حل مشکل ترافیک رتبه اول و بعد از آن مدیریت گردشگری رتبه دوم و بهبود تصمیمگیری رتبه سوم را دارند. بقیه عوامل به ترتیب حل مشکل پارکینگ، بهبود سطح نظارت، مراقبتهای بهداشتی، مدیریت پسماند، یکپارچهسازی انرژیهای تجدیدپذیر، امنیت سایبری، مسیریابی هوشمند، آموزش، بهینه سازی کشاورزی و ایجاد خانهی هوشمند میباشند. در بین خوشهها، خوشه مدیریت انرژی در جایگاه بالاتری نسبت به سایر خوشهها قرار گرفت.
چکیده انگلیسی :
With the increasing importance of technology in everyday life, the concept of smart cities has become increasingly important, and governments and the private sector have invested heavily in smart city projects. Also, thanks to the rapid growth of artificial intelligence-based smart city initiatives, researchers, government officials, and professionals are looking for new information and approaches to make cities smarter. Therefore, the present study was conducted to identify the applications of artificial intelligence in urban management and rank them. This research is descriptive research from the point of view of practical purpose and method. The key factors of artificial intelligence applications in urban management were identified based on library studies. The necessary data for their ranking was collected using a questionnaire prepared based on the technique used in this research (DNP). The community of experts in this research were 8 managers and officials of the municipalities of Shiraz city. 13 key factors were identified and grouped into 4 groups: crisis management, transportation management, integrated service management, and energy management. According to the data, factors for solving the traffic problem are ranked first, followed by tourism management, and improving decision-making is ranked third. The rest of the factors are solving the parking problem, improving supervision, health care, waste management, integration of renewable energy, cyber security, smart routing, education, optimizing agriculture, and creating a smart home. Among the clusters, the energy management cluster was ranked higher than other clusters.
• Acheampong, R. A., & Cugurullo, F. (2019). Capturing the behavioural determinants behind the adoption of autonomous vehicles: Conceptual frameworks and measurement models to predict public transport, sharing and ownership trends of self-driving cars. Transportation research part F: traffic psychology and behaviour, 62, 349-375.
• Adunadepo, A. M. D., & Sunday, O. (2016,. February). Artifهcial intelligence for sustainable development of intelligent buildings. In Proceedings of the 9th CIDB Postgraduate Conference, Cape Town, South Africa (pp. 1–4).
• Ampatzidis, Y., De Bellis, L., & Luvisi, A. (2017). iPathology: robotic applications and management of plants and plant diseases. Sustainability, 9(6), 1010.
• Ampatzidis, Y., De Bellis, L., & Luvisi, A. (2017). iPathology: robotic applications and management of plants and plant diseases. Sustainability, 9(6), 1010.
• Augusto, J. C., Nakashima, H., & Aghajan, H. (2010). Ambient intelligence and smart environments: A state of the art. Handbook of ambient intelligence and smart environments, 3-31.
• Bostrom, Nick, and Eliezer Yudkowsky. "The ethics of artificial intelligence." In Artificial intelligence safety and security, pp. 57-69. Chapman and Hall/CRC, 2018.
• Buhalis, D., & Amaranggana, A. (2013). Smart tourism destinations. In Information and communication technologies in tourism 2014: Proceedings of the international conference in Dublin, Ireland, January 21-24, 2014 (pp. 553-564). Springer International Publishing.
• Cassandras, C. G. (2016). Smart cities as cyber-physical social systems. Engineering, 2(2), 156-158.
• Chandler, D. (2018). The future of smart cities relies on artificial intelligence. Ec & M, Retrieved from https://acces.bibl.ulaval.ca/login?url=https://search-proquest- com.acces.bibl.ulaval.ca/docview/2036809931?accountid=12008
• Chen, B., Marvin, S., & While, A. (2020). Containing COVID-19 in China: AI and the robotic restructuring of future cities. Dialogues in Human Geography, 10(2), 238-241.
• Chen, B., Marvin, S., & While, A. (2020). Containing COVID-19 in China: AI and the robotic restructuring of future cities. Dialogues in Human Geography, 10(2), 238-241.
• Chui, K. T., Alhalabi, W., Pang, S. S. H., Pablos, P. O. D., Liu, R. W., & Zhao, M. (2017). Disease diagnosis in smart healthcare: Innovation, technologies and applications. Sustainability, 9(12), 2309.
• Crang, M., & Graham, S. (2007). Sentient cities ambient intelligence and the politics of urban space. Information, Communication & Society, 10(6), 789-817.
• Cugurullo, F. (2020). Urban artificial intelligence: From automation to autonomy in the smart city. Frontiers in Sustainable Cities, 2, 38.
• De Jong, M., Joss, S., Schraven, D., Zhan, C. and Weijnen, M., 2015. Sustainable–smart–re- silient–low carbon–eco–knowledge cities; making sense of a multitude of concepts promoting sustainable urbanization. Journal of Cleaner production, 109, 25-38.
• De Paz, J. F., Bajo, J., Rodríguez, S., Villarrubia, G., & Corchado, J. M. (2016). Intelligent system for lighting control in smart cities. Information Sciences, 372, 241-255.
• Fariniuk, T. M. D. (2020). Smart cities and the pandemic: digital technologies on the urban management of Brazilian cities. Revista de Administração Pública, 54, 860-873.
• Fayyaz, M., Farhan, A. A., & Javed, A. R. (2022). Thermal comfort model for HVAC buildings using machine learning. Arabian Journal for Science and Engineering, 1-16.
• Gabrys, J. (2014). Programming environments: Environmentality and citizen sensing in the smart city. Environment and planning D: Society and space, 32(1), 30-48.
• Gracias, J. S., Parnell, G. S., Specking, E., Pohl, E. A., & Buchanan, R. (2023). Smart Cities—A Structured Literature Review. Smart Cities, 6(4), 1719-1743.
• Hollands, R. G. (2020). Will the real smart city please stand up?: Intelligent, progressive or entrepreneurial?. In The Routledge companion to smart cities (pp. 179-199). Routledge.
• Hollands, R.G. (2008). Will the real smart city please stand up? in City, 12(3), pp.37-41. Holm,
• Ingwersen, P., & Serrano-López, A. E. (2018). Smart city research 1990–2016. Scientometrics, 117, 1205-1236.
• Ismaeel, A. G., Mary, J., Chelliah, A., Logeshwaran, J., Mahmood, S. N., Alani, S., & Shather, A. H. (2023). Enhancing Traffic Intelligence in Smart Cities Using Sustainable Deep Radial Function. Sustainability, 15(19), 14441.
• Ismagilova, E., Hughes, L., Dwivedi, Y. K., & Raman, K. R. (2019). Smart cities: Advances in research—An information systems perspective. International journal of information management, 47, 88-100.
• Javed, A. R., Ahmed, W., Pandya, S., Maddikunta, P. K. R., Alazab, M., & Gadekallu, T. R. (2023). A survey of explainable artificial intelligence for smart cities. Electronics, 12(4), 1020.
• Javed, A. R., Fahad, L. G., Farhan, A. A., Abbas, S., Srivastava, G., Parizi, R. M., & Khan, M. S. (2021). Automated cognitive health assessment in smart homes using machine learning. Sustainable Cities and Society, 65, 102572.
• Javed, A. R., Faheem, R., Asim, M., Baker, T., & Beg, M. O. (2021). A smartphone sensors-based personalized human activity recognition system for sustainable smart cities. Sustainable Cities and Society, 71, 102970.
• Johnson, P. A., Robinson, P. J., & Philpot, S. (2020). Type, tweet, tap, and pass: How smart city technology is creating a transactional citizen. Government Information Quarterly, 37(1), 101414.
• Kapoor, N., Ahmad, N., Nayak, S. K., Singh, S. P., Ilavarasan, P. V., & Ramamoorthy, P. (2021). Identifying infrastructural gap areas for smart and sustainable tribal village development: A data science approach from India. International Journal of Information Management Data Insights, 1(2), 100041.
• Kar, A. K., Gupta, M. P., Ilavarasan, P. V., & Dwivedi, Y. K. (Eds.). (2017). Advances in smart cities: smarter people, governance, and solutions. CRC Press.
• Kar, A. K., Ilavarasan, P. V., Gupta, M. P., Dwivedi, Y. K., Mäntymäki, M., Janssen, M., ... & Al-Sharhan, S. (2017). Digital Nations–Smart Cities, Innovation, and Sustainability.
• Kitchin, R. (2014). The real-time city? Big data and smart urbanism. GeoJournal, 79(1), 1-14.
• Kuk, G., & Janssen, M. (2013). The business models and information architectures of smart cities. In Creating Smart-er Cities (pp. 39-51). Routledge.
• Lancet, T. (2017). Artificial intelligence in health care: Within touching distance. Lancet (London, England), 390(10114), 2739.
• Liebig, T., Piatkowski, N., Bockermann, C., & Morik, K. (2014, March). Predictive trip planning-smart routing in smart cities. In EDBT/ICDT Workshops (pp. 331-338).
• Lu, H., Li, Y., Chen, M., Kim, H., & Serikawa, S. (2018). Brain intelligence: go beyond artificial intelligence. Mobile Networks and Applications, 23, 368-375.
• Mathur, S., & Modani, U. S. (2016, March). Smart City-a gateway for artificial intelligence in India. In 2016 IEEE Students' Conference on Electrical, Electronics and Computer Science (SCEECS) (pp. 1-3). IEEE.
• Mathur, S., & Modani, U. S. (2016, March). Smart City-a gateway for artificial intelligence in India. In 2016 IEEE Students' Conference on Electrical, Electronics and Computer Science (SCEECS) (pp. 1-3). IEEE.
• Menouar, H., Guvenc, I., Akkaya, K., Uluagac, A. S., Kadri, A., & Tuncer, A. (2017). UAV-enabled intelligent transportation systems for the smart city: Applications and challenges. IEEE Communications Magazine, 55(3), 22-28.
• Mohammadi, M., & Al-Fuqaha, A. (2018). Enabling cognitive smart cities using big data and machine learning: Approaches and challenges. IEEE Communications Magazine, 56(2), 94-101.
• Mohanty, S. P., Choppali, U., & Kougianos, E. (2016). Everything you wanted to know about smart cities: The Internet of things is the backbone. IEEE consumer electronics magazine, 5(3), 60-70.
• Nguyen, H., Nawara, D., & Kashef, R. (2024). Connecting the Indispensable Roles of IoT and Artificial Intelligence in Smart Cities: A Survey. Journal of Information and Intelligence.
• Osheroff, J. A., Teich, J. M., Middleton, B., Steen, E. B., Wright, A., & Detmer, D. E. (2007). A roadmap for national action on clinical decision support. Journal of the American medical informatics association, 14(2), 141-145.
• Pandya, S., Srivastava, G., Jhaveri, R., Babu, M. R., Bhattacharya, S., Maddikunta, P. K. R., ... & Gadekallu, T. R. (2023). Federated learning for smart cities: A comprehensive survey. Sustainable Energy Technologies and Assessments, 55, 102987.
• Rani, S., Ahmed, S. H., & Shah, S. C. (2018). Smart health: A novel paradigm to control the chickungunya virus. IEEE Internet of Things Journal, 6(2), 1306-1311.
• Rathore, M. M., Paul, A., Hong, W. H., Seo, H., Awan, I. and Saeed, S., 2018. Exploiting IoT and big data analytics: Defining smart digital city using real-time urban data. Sustainable cities and society, 40, 600-610.
• Rjab, A. B., & Mellouli, S. (2018, May). Smart cities in the era of artificial intelligence and internet of things: literature review from 1990 to 2017. In Proceedings of the 19th annual international conference on digital government research: governance in the data age (pp. 1-10).
• Robles, R. J., Kim, T. H., Cook, D., & Das, S. (2010). A review on security in smart home development. International Journal of Advanced Science and Technology, 15.
• Russell, S. J., & Norvig, P. (2016). Artificial intelligence: a modern approach. Pearson.
• Scoblete, G. (2018). Welcome To The Age Of Smart Cities: The city of the future uses technology across a wide range of services and infrastructure. And the future is n Shih ow. TWICE: This Week In Consumer Electronics, 39(1), 40-41.
• Shabbir, A., Shabir, M., Javed, A. R., Chakraborty, C., & Rizwan, M. (2022). Suspicious transaction detection in banking cyber–physical systems. Computers & Electrical Engineering, 97, 107596.
• Shankar, V. (2018). How artificial intelligence (AI) is reshaping retailing. Journal of retailing, 94(4), vi-xi.
• Syam, N., & Sharma, A. (2018). Waiting for a sales renaissance in the fourth industrial revolution: Machine learning and artificial intelligence in sales research and practice. Industrial marketing management, 69, 135-146.
• Tawalbeh, H., Hashish, S., Tawalbeh, L., & Aldairi, A. (2017). Security in Wireless Sensor Networks Using Lightweight Cryptography. Journal of Information Assurance & Security, 12(4).
• Tekouabou, S. C. K., Cherif, W., & Silkan, H. (2022). Improving parking availability prediction in smart cities with IoT and ensemble-based model. Journal of King Saud University-Computer and Information Sciences, 34(3), 687-697.
• Thrift, N. (2014). The ‘sentient’city and what it may portend. Big Data & Society, 1(1), 2053951714532241.
• Turing, A. M. (2009). Computing machinery and intelligence (pp. 23-65). Springer Netherlands.
• Williamson, B. (2019). Computing brains: learning algorithms and neurocomputation in the smart city. In The Social Power of Algorithms (pp. 81-99). Routledge.
• Williamson, B. (2019). Computing brains: learning algorithms and neurocomputation in the smart city. In The Social Power of Algorithms (pp. 81-99). Routledge.
• Yin, C., Xiong, Z., Chen, H., Wang, J., Cooper, D., & David, B. (2015). A literature survey on smart cities. Science China. Information Sciences, 58(10), 1-18.