آینده پژوهی اثرات رشد هوشمند شهری در ایجاد شهرهای کم¬کربن (با رویکردی به شهرهای ایران)
مهتاب امرایی
1
(
دانشجوی دکتر جغرافیا و برنامه ریزی شهری دانشگاه زنجان
)
بهنام شیرزادی
2
(
دانشجوی دکتری جغرافیا و برنامه¬ریزی شهری، گروه جغرافیا، دانشکده علوم اجتماعی، دانشگاه زنجان، شهر زنجان ، ایران.
)
محمد تقی حیدری
3
(
هئیت علمی دانشگاه زنجان
)
کلید واژه: شهر هوشمند, شهر کم¬کربن, شهرهای ایران.,
چکیده مقاله :
در این پژوهش سعی شد تا به بررسی فرضیه اصلی پژوهش یعنی اثرات رشد هوشمند شهری در ایجاد شهرهای کم کربن در شهرهای ایران پرداخته شود. پژوهش حاضر از ترکیب دو تکنیک کتابخانهای و روش دلفی استفاده کرده و دارای رویکردی اکتشافی است. شاخصهای کلیدی از طریق روش دلفی و از طریق 30 نفر از خبرگان حوزهی برنامهریزی شهری به دست آمد. تحلیل یافتهها از طریف نرمافزار میکمک صورت گرفت. یافتههای نظری پژوهش نشان میدهد که شهرهای ایران برای دستیابی به شهرهای کمکربن از طریق هوشمندسازی شهرها در آینده به کارآیی انرژی و انرژیهای تجدیدپذیر، حمل و نقل پایدار، مدیریت پسماند، مدیریت آب و... نیازمند است. 17/75 درصد رابطه ماتریسی دارای اثرات متقاطع سه، روابط عاملهای کلیدی بسیار زیاد بوده است، از تأثیرگذاری و تأثیرپذیری برخوردار بودهاند. ماتریس اثرات مستقیم و هم ماتریس تأثیرات بالقوه مستقیم به ترتیب 98 و 97 درصد بوده که حاکی از روایی بالای پرسشنامه است. تحلیل سیستم نشان داد که در ماتریس متقاطع، جمع اعداد در سطر میزان تأثیرگذاری آن عامل را و جمع اعداد در ستون نیز میزان تأثیرپذیری آن عامل را نشان میدهد. پیرامون قرارگیری و توزیع شاخصها در صفحه نمودار باید گفت که برحسب منطقهبندی متغیرها بیشتر در شمال شرق و شمال غرب پراکندهان و این نشان میدهد که توزیع نرمالی ندارد.
چکیده انگلیسی :
in this research, an attempt was made to investigate the main hypothesis of the research, i.e. the effects of smart urban growth in creating low-carbon cities in Iranian cities. The current research uses a combination of two library techniques and the Delphi method and has an exploratory approach. Key indicators were obtained through the Delphi method and through 30 experts in the field of urban planning. The analysis of the findings was done by Mic Mac software. The theoretical findings of the research show that Iranian cities need energy efficiency and renewable energies, sustainable transportation, waste management, water management, etc. in order to achieve low carbon cities through smart cities in the future. 75.17 percent of the matrix relationship has three cross effects, the relationships of the key factors have been very high, they have had influence and influence. The matrix of direct effects and the matrix of potential direct effects were 98 and 97%, respectively, which indicates the high validity of the questionnaire. The analysis of the system showed that in the cross matrix, the sum of the numbers in the row shows the influence of that factor and the sum of the numbers in the column also shows the influence of that factor. Regarding the placement and distribution of indicators on the graph page, it should be said that according to the regionalization of the variables, they are mostly scattered in the northeast and northwest, and this shows that the distribution is not normal.
References
1. Angelidou, M. (2014). Smart city policies: A spatial approach. Cities, 41, S3-S11. https://doi.org/10.1016/j.cities.2014.06.007
2. Albino, V. Beradi, U. Dangelico, R.M. (2015). Smart Cities: Definitions, Dimensions, Performance, and Initiatives. Journal of Urban Technology. 22(1): 3-21. https://doi.org/10.1080/10630732.2014.942092
3. Alvarez, F et al . (2009). The Future Internet. Springer Heidelberg Dordrecht London New York. http://dx.doi.org/10.1007/978-3-642-20898-0
4. AAli, S. A. (2016). Neighborhood design with a low-carbon approach, master's thesis of the urban design department. Supervisor: Haq-Perest, Farzin, Maliki, Aida, Tabriz University of Islamic Art, Faculty of Architecture and Urban Planning. https://ganj.irandoc.ac.ir/viewer/b8ca74b94fd533583dacbbab64355af1?sample=1 [In Persian].
5. Asiyabanipour, E. (2013). Evaluation of urban development plans and programs with zero carbon approach, case study: Tabriz city. Master's Thesis of the Department of Geography and Urban Planning, Supervisor: Professor Pourmohammadi, M. R, Tabriz University, Ares International Campus, School of Architecture and Urban Planning. https://civilica.com/doc/531532 [In Persian].
6. Brandon, P, S, Lombardi, P. (2005). Evaluating Sustainable Development In The Built Environment. Blackwell Publishing. http://ndl.ethernet.edu.et/bitstream/123456789/54577/1/209.pdf
7. Calvillo, C. F., Sánchez-Miralles, A., & Villar, J. (2016). Energy management and planning in smart cities. Renewable and Sustainable Energy Reviews, 55, 273-287. https://doi.org/10.1016/j.rser.2015.10.133
8. Cavada, M.; Hunt, D.; Rogers, C. Do smart cities realise their potential for lower carbon dioxide emissions? Proc. Inst. Civ. Eng. Eng. Sustain. 2016, 169, 243–252. http://dx.doi.org/10.1680/jensu.15.00032
9. Chulenyov, A., Nautiyal, M., Singla, A. K., Arora, R., & Kumar, A. (2024). Reducing Carbon Emissions: An Analysis of Smart City Initiatives and the Carbon Reduction Test. In BIO Web of Conferences (Vol. 86, p. 01081). EDP Sciences. http://dx.doi.org/10.1051/bioconf/20248601081
10. Dinca, G.; Milan, A.A.; Andronic, M.L.; Pasztori, A.M.; Dinca, D. Does Circular Economy Contribute to Smart Cities’ Sustainable Development? Int. J. Environ. Res. Public Health 2022, 19, 37627. https://doi.org/10.3390/ijerph19137627
11. Feiock, R. C. & Tavares, A. F. & Lubell, M. (2008) “Policy Instrument Choices for Growth Management and Land Use Regulation”. The Policy Studies Journal, 36 (3), 461–48. https://doi.org/10.1111/j.1541-0072.2008.00277.x
12. Ghaemi Asl, M., Selimifar, M., Mahdavi Adeli, M., & Rajabi Mashhadhi, M. (2014). Simulation of creating a low-carbon ecological city using urban waste and photovoltaic technology: sustainable energy planning of the urban sector of Mashhad. Journal of Urban Economics and Management, Year 5, Number 317, 67-81. https://civilica.com/doc/685762/ [In Persian].
13. Hu, C. (2017, April). Research on the strategy of low-carbon urban planning based on residents’ living and consumption. In IOP Conference Series: Earth and Environmental Science (Vol. 61, No. 1, p. 012049). IOP Publishing. http://dx.doi.org/10.1088/1755-1315/61/1/012049
14. Hodson, M., & Marvin, S. (2011). Can cities shape socio-technical transitions and how would we know if they were. In Bulkeley, H., Broto, V. C., Hodson, M., & Marvin, S. (Eds.). Cities and low carbon transitions, (Vol. 35).pp: 54-70 https://www.geos.ed.ac.uk/~sallen/dave/dx.doi.org/10.1016/j.respol.2010.01.020
15. https://smartgrowth.org/
16. Harrison, C. Donnelly, I.A. (2012). A theory of smart cities. Retried from IBM Cor. https://www.researchgate.net/publication/228428752_A_Theory_of_Smart_Cities
17. Heuse, P.; Zimmer, H. (2020). The Europe 2020 strategy. Econ. Rev. 2011, 2, 21–45. https://ideas.repec.org/a/nbb/ecrart/y2011mseptemberiiip21-45.html
18. International Energy Agency. (IEA) (2008). Implementing Energy Efficiency. https://www.iea.org/topics/energy-efficiency
19. Liu, X., & Bae, J. (2018). Urbanization and industrialization impact of CO2 emissions in China. Journal of cleaner production, 172, 178-186. https://doi.org/10.1016/j.jclepro.2017.10.156
20. Long, Y., Tang, L., Zhou, Y., Zhao, S., & Zhu, H. (2023). Causal relationship between gut microbiota and cancers: a two-sample Mendelian randomisation study. BMC medicine, 21(1), 66. https://doi.org/10.1186/s12916-023-02761-6
21. Latifi, G. (2003). The necessity of cultural planning in sustainable urban development. Journal of Political and Economic Information, Volume 18, No. 190-200, 188-170. https://civilica.com/doc/1801982 [In Persian].
22. Mohammad Bagheri, A. (2014). The need to focus on the development of low-carbon cities in the urban management structure. Annual Conference on Architecture, Urban Planning and Urban Management Research. https://civilica.com/doc/544455 [In Persian].
23. Moradi, A., & Charejo, F. (2021). Strategic planning of sustainable urban development with a special approach to low-carbon city (case study: Sanandaj city). Urban Research and Planning Quarterly, year, 12, number 46, 111-129. https://doi.org/10.30495/jupm.2021.4063 [In Persian].
24. Pathak, S.; Pandey, M. Smart Cities: Review of Characteristics, Composition, Challenges, and Technologies. In Proceedings of the 6th International Conference on Inventive Computation Technologies, ICICT 2021, Coimbatore, India, 20–22 January 2021; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA; pp. 871–876. http://dx.doi.org/10.1109/ICICT50816.2021.9358708
25. Pamlin, D., & Armstrong, S. (2015). Global challenges: 12 risks that threaten human civilization. Global Challenges Foundation, Stockholm. https://www.pamlin.net/s/12-Risks-that-threaten-human-civilisation-GCF-Oxford-2015.pdf
26. Panovska-Griffiths, J., Kerr, C. C., Stuart, R. M., Mistry, D., Klein, D. J., Viner, R. M., & Bonell, C. (2020). Determining the optimal strategy for reopening schools, the impact of test and trace interventions, and the risk of occurrence of a second COVID-19 epidemic wave in the UK: a modelling study. The Lancet Child & Adolescent Health, 4(11), 817-827. https://doi.org/10.1016/s2352-4642(20)30250-9
27. Pathak, S.; Pandey, M. Smart Cities: Review of Characteristics, Composition, Challenges, and Technologies. In Proceedings of the 6th International Conference on Inventive Computation Technologies, ICICT 2021, Coimbatore, India, 20–22 January 2021; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA; pp. 871–876. http://dx.doi.org/10.1109/ICICT50816.2021.9358708
28. Pour Ahmad, A., Ziary, K., Hatminjad, Hossein. P & Pashaabadi, S. (2017). The concept and features of a smart city. Scientific Research Journal of Nazar Institute of Art, Architecture and Urban Planning, No. 15(58): 5-26. file:///C:/Users/PishroPardaz/Downloads/44213975801-1.pdf [In Persian].
29. Pourmohammadi, M. R., & Ghorbani, R. (2012). Dimensions and strategies of the paradigm of densification of urban spaces. Modares Humanities, Summer 2012, No. 29, pp. 85-108. https://ensani.ir/file/download/article/20120413144449-2172-283.pdf [In Persian].
30. Kim, K.-G. The Urban Book Series Low-Carbon Smart Cities Tools for Climate Resilience Planning. Available online: http: //www.springer.com/series/14773 (accessed on 3 November 2023). http://dx.doi.org/10.1007/978-3-319-59618-1
31. Shahid, N.; Shah, M.A.; Khan, A.; Maple, C.; Jeon, G. Towards greener smart cities and road traffic forecasting using air pollution data. Sustain. Cities Soc. 2021, 72, 103062. http://dx.doi.org/10.1016/j.scs.2021.103062
32. Satterthwaite, D. (2008). Cities' contribution to global warming: notes on the allocation of greenhouse gas emissions. Environment and urbanization, 20(2), 539-549. http://dx.doi.org/10.1177/0956247808096127
33. Sinkiene, J., Grumadaite, K., & Liugailaite-Radzvickiene, L. (2014, May). Diversity of theoretical approaches to the concept of smart city. In Proceedings of the 8th international scientific conference “Business and Management (pp. 15-16). http://dx.doi.org/10.3846/bm.2014.112
34. Sheikhi, S., Habib, F., & Habib, F. (2022). Developing a conceptual and evaluation model of low-carbon cities. Environmental Science and Technology, twenty-fourth volume, number eight, November, 61-75. https://doi.org/10.30495/jest.2023.68388.5713 [In Persian].
35. Thellufsen, J. Z., Lund, H., Sorknæs, P., Østergaard, P. A., Chang, M., Drysdale, D., ... & Sperling, K. (2020). Smart energy cities in a 100% renewable energy context. Renewable and Sustainable Energy Reviews, 129, 109922. https://doi.org/10.1016/j.rser.2020.109922
36. Tan, S., Yang, J., Yan, J., Lee, C., Hashim, H., & Chen, B. (2017). A holistic low carbon city indicator framework for sustainable development. Applied Energy, 185(2), 1919-1930. https://doi.org/https://doi.org/10.1016/j.apenergy.2016.03.041
37. United Nations Department of Economic and Social Affairs. SDGs. Available online: (accessed on 3 November 2023). https://www.globalgoals.org/goals/
38. Wang, M., Zhang, L., Gao, K., & Liu, L. (2016). Significance of Development of Low-Carbon Healthy Cities. China Low-Carbon Healthy City, Technology Assessment and Practice, 15-28. https://doi.org/10.1007/978-3-662-49071-6_2
39. Wang, X., Wang, G., Chen, T., Zeng, Z., & Heng, C. K. (2023). Low-carbon city and its future research trends: A bibliometric analysis and systematic review. Sustainable Cities and Society, 90, 104381. https://doi.org/10.1016/j.scs.2022.104381
40. Wenyao, Y. (2010). Practice and Innovation of Low-carbon Concept in the Planning of Hongqiao Business District, the impact of spatial planning urban design and built form on urban sustainability, 46thISOCARP Congress 2010. http://www.isocarp.net/Data /casestudies/1714.pdf
41. Zhu, H., Pan, K., Liu, Y., Chang, Z., Jiang, P., & Li, Y. (2019). Analyzing temporal and spatial characteristics and determinant factors of energy-related CO2 emissions of Shanghai in China using high-resolution gridded data. Sustainability, 11(17), 4766. https://www.mdpi.com/2071-1050/11/17/4766#