بررسی عملکرد ماده خشک و کارآیی مصرف آب سورگوم علوفهای در شرایط کمآبی و کاربرد سوپرجاذب
محورهای موضوعی : مجله علمی- پژوهشی اکوفیزیولوژی گیاهی
1 - بخش تحقیقات زراعی باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی سیستان، سازمان تحقیقات، آموزش و ترویج کشاورزی، زابل، ایران
کلید واژه: هزینه, نیاز آبی, سود, پلیمر, بازده اقتصادی,
چکیده مقاله :
به منظور بررسی امکان کاهش آب مورد نیاز سورگوم علوفهای رقم اسپیدفید با کاربرد سوپرجاذب، بدون کاهش عملکرد ماده خشک و افزایش کارآیی مصرف آب و همچنین بررسی بازده اقتصادی مصرف سوپرجاذب، آزمایشی در منطقه دشتک زاهدان طی سالهای 1392 و 1393 بهصورت کرتهای دو بار خرد شده با 4 رژیم آبیاری، شامل تامین 40، 60، 80 و 100 درصد آب مورد نیاز گیاه براساس تبخیر و تعرق پتانسیل گیاه در کرتهای اصلی، 4 سطح سوپرجاذب 0، 75، 150 و 225 کیلوگرم در هکتار در کرتهای فرعی و برداشت (چین) به عنوان عامل فرعی-فرعی در قالب طرح پایه بلوکهای کامل تصادفی با 3 تکرار انجام شد. نتایج نشان داد که اثر رژیم آبیاری، سوپرجاذب و اثر متقابل آنها بر عملکرد ماده خشک و کارآیی مصرف آب و همچنین بررسی بازده اقتصادی مصرف سوپرجاذب معنی دار بود. مدلهای رگرسیون برآورد شده نشان داد که کاربرد سوپرجاذب اگرچه در تیمار 100 درصد آبیاری بر عملکرد ماده خشک و کارآیی مصرف آب تاثیری نداشت اما در سایر تیمارهای آبیاری باعث افزایش عملکرد ماده خشک و کارآیی مصرف آب شد. بنابراین با کاربرد 75 کیلوگرم سوپرجاذب در هکتار، همراه با 20 درصد کاهش آب مورد نیاز سورگوم در مناطق خشک، میتوان عملکرد ماده خشک و کارآیی مصرف آبی مشابه شرایط تامین 100 درصد آب مورد نیاز سورگوم داشت. همچنین بیشترین بازده اقتصادی کاربرد سوپرجاذب، در سطح 75 کیلوگرم سوپرجاذب و تامین 80 درصد آب مورد نیاز سورگوم به دست آمد.
In order to investigate the possibility of decreasing forage sorghum (Sorghum bicolor L. var speedfeed) water requirements applying of superabsorbent (SAP), without decreasing the dry matter yield and increasing the water use efficiency, and also to investigate the economic efficiency of applying superabsorbent (SAP), this experiment was conducted in Dashtak region of Zahedan during 2013 and 2014 seasons in a split-split plot with four irrigation regimes, providing 40, 60, 80 and 100% of the water requirements of sorghum, calculated from pan evaporation as main plots, four amounts of SAP )0, 75, 150 and 225 kg ha-1( as subplots and cutting as sub-subplots based on a completely randomized block design with three replications. The results indicated that the effect of irrigation regimes, SAP levels and their interaction effects of the two factors on dry matter yield, water use efficiency, and economic efficiency were significant. The regression models estimated showed that applying SAP in 100% ETc treatment had no effect on this trait but in the other irrigation treatments caused an increased the dry matter yield and water use efficiency. Therefore, applying 75 kg SAP per hectare along with 20% decrease in the sorghum’s water requirement in arid regions, the dry matter yield and water use efficiency is maintained similar to 100% sorghum’s water requirement. Also the greatest economic efficiency of applying SAP was secured at 75 kg SAP per hectare SAP level and 80% of sorghum’s water requirement.
اسکویی نژاد م.م. 1388. اقتصاد مهندسی. انتشارات دانشگاه امیرکبیر. چاپ چهارم. صفحه 417.
علیزاده، ا، و کمالی، غ. 1386. نیاز آبی گیاهان. انتشارات دانشگاه امام رضا. چاپ اول. 227 صفحه.
موسوی، غ،. م، میرهادی. ج، سیادت. ع، نورمحمدی. ق، و ف، درویش. 1387. تاثیر سطوح آبیاری و نیتروژن بر عملکرد کمی، کیفی و خصوصیات مورفوفیزیولوژیک ارزن و سورگوم علوفهای. پایان نامه دکترا.
ولدآبادی، س. ع. 1378. بررسی اثرات اکوفیزیولوژیک تنش خشکی در ذرت، سورگوم و ارزن. رساله دکترای رشته زراعت، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات تهران. 200 صفحه.
Abedi-Koupai, J. and Asadkazemi, J. 2006. Effects of hydrophilic polymer on the field performance of an ornamental plant (Cupressus arizonica) under reduced irrigation regimes. Iranian Polymer J. 15(9): 715- 725.
Ahmadi, A., D. Murphy, and W. Tad. 1991. Stomatal conductance and Co2 assimilation as screening tools for drought resistance in sorghum. J. Plant Sci. 71: 689-694.
Aishah, S. Saberi, H.A.R. Halim, R.A. and Zaharah, A.R, 2011. Yield responses of forage sorghums to salinity and irrigation frequency. Afri. J. of Biotechnol. 10(20): 4114-4120.
Almodares, A. Taheri, R. and Adeli, S. 2007. Inter-relationship between growth analysis and carbohydrate contents of sweet sorghum cultivars and lines. J. Environ. Biol. 28(3): 527-531.
Berengner, M.J., and J.M. Faci. 2001. Sorghum (Sorghum bicolor L.) yield compensation processes under different plant densities and variable water supply. Europ. J. of Agron. 15: 43-55.
Corleto, A. Cazzato, E. Ventricelli, P. Cosentino, S.L. Gresta, F. Testa, G. Maiorana, M. Coulter, J. 2009. Plan now for successful corn planting. Available at http:// blog.lib.umn.edu/efans/cropnews/2010/03/plan-now-for-successfulcorn-p.html (posted 20 Mar. 2010; cited 25 Feb. 2011; verifi ed 20 July 2011). Univ. of Minnesota, St. Paul.
Fazeli Rostampour, M. Yarnia, M. Farokhzadeh Khoee, R. Seghatoleslami, M.J. and Moosavi, G.R. 2013. Physiological response of forage sorghum to polymer under water deficit conditions. Agron. J. 105(4): 951-959.
Howell, T.A. Evett, S.R. Tolk, J.A. Copeland, K.S. Colaizzi, P.D. and Gowda, P.H. 2008. Evapotranspiration of corn and forage sorghum for silage. World Environmental and Water Resources Congress. 10(1): 886-889.
Hllen, R.G. Pereira, L.S. Raes, D. and Smith, M. 1998. Crop evapofranspiration–guidelines for computing crop water requirements. FAO irrigation and drainage. No 56.
Islam, M.R. Egrinya Eneji, A. Ren, C., Li, J. and Hu, Y. 2011a. Impact of water-saving superabsorbent polymer on oat (Avena sativa L.) yield and quality in an arid sandy soil. Scientific Res. and Essays. 6(4): 720-728.
Islam, M.R. Xue, X., Mao, S. Zhao, X. Eneji, A.E. and Hu, Y. 2011b. Superabsorbent polymers (SAP) enhance efficient and eco-friendly production of corn (Zea mays L.) in drought affected areas of northern China. Afri. J. of Biotechnol. 10(24): 4887-4894.
Jalilian, J. and O. Mohsennia. 2013. Effects of superabsorbent and irrigation regime on seedling growth characteristics of barley (Hordeum vulgare L.). Cercetari Agronomice in Moldova. 3 (155): 11-19.
Kanemasu, E., T. Singh, P. Chaudhuri, and U.N. Singh. 1984. Water use and water use efficiency of pearl millet and sorghum. In: International symposium on agrometeorology of sorghum and millet in the semi‑arid tropics, Patancheru. Proceedings. Patancheru: International Crops Research Institute for the Semi‑Arid Tropics. Pp: 175‑181.
Karimi, A. and M. Naderi. 2007. Yield and water use efficiency of forage corn as influenced by superabsorbent polymer application in soils with different texture. Agric. Res. 3:187–198.
Khadem, S.A., M. Galavi, M. Ramrodi, S.R. Mousavi, R.J. Rousta, P. Rezvani-Moghadam. 2010. Effect of animal manure and superabsorbent polymer on corn leaf relative water content, cell membrane stability and leaf chlorophyll content under dry condition. Aus. J. Crop Sci. 4(8): 642-647.
Liang, R. and Liu M.Z. 2006. Preparation and properties of a double-coated slow- release and water-retention urea fertilizer. J. of Agricultural and Food Chemistry. 54: 1392-1398.
Littell, R.C. Milliken, G.A. Stroup, W.W. Wolfinger R.D. and Schabenberger O. 2006. SAS for mixed models. 2d ed. Cary, NC: SAS Institute Inc.
Mikkelsen, R.L. 1994. Using hydrophilic polymers control nutrient release. Fertilizer Res. 38: 53-59.
Monnig, S. 2005. Water saturated superabsorbent polymers used in high strength concrete. Otto Graft J. 3(16): 193-202.
Muldoon, D.K. 1985. Summer forage under irrigation, 1. Growth and development. Aus. J. of Expetimental Agri. 25: 392- 401.
Piccinni, G. Ko, J. Marek, T, and Howell, T. 2009. Determination of growth-stage-specific crop coefficients (KC) of maize and sorghum. Agricultural Water Manag. 96: 1698–1704.
Ryan J. Roekel, V. and Coulter, J.A. 2011. Agronomic responses of corn to planting date and plant density. Agron. J. 103(5): 1414–1422.
Soleymani, H. and Hasanali, A. 2008. Estimation of water unit cost, water (WUE) efficiency and water added value for major crops in Darab as an arid area. Iranian J. of Agricultural Sci. 5(1): 45-60.
Widiastuti, N. Wu, H, Ang, M. and Zhang, D.k. 2008. The potential application of natural zeolite for greywater treatment. Des alienation. 218, 271- 280.
_||_