اثرات باقیمانده سدیم کربنات آب آبیاری بر عملکرد و فعالیت نشانگرهای شیمیایی در ارقام جو پاییزه.
محورهای موضوعی : مجله علمی- پژوهشی اکوفیزیولوژی گیاهی
1 - استادیار گروه زراعت و اصلاح نباتات، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران
کلید واژه: شوری آب, مالون دی آلدئید, دی تیروزین, دی هیدروکسی گوآنوزین,
چکیده مقاله :
به منظور بررسی اثر باقیمانده سدیم کربنات آب آبیاری بر گیاه جو (Hordeum vulgare) و فعالیت نشانگرهای شیمیایی، طرحی به صورت کرت یکبارخرد شده در قالب بلوک های کامل تصادفی با چهار تکرار در مزرعه تحقیقاتی دانشگاه آزاد اسلامی واحد کرج درسال 1392 اجرا شد. در این آزمایش ارقام جو شامل والفجر و ارس در کرت اصلی و تیمار آبیاری شامل مقادیر مختلف باقیمانده سدیم کربنات در آب آبیاری در چهار سطح (شاهد، 1، 2 و3 میلی اکی والان بر لیتر) در کرت فرعی قرار گرفت. در این آزمایش صفاتی از قبیل عملکرد دانه، وزن هزار دانه و میزان نشانگرهای شیمیایی شامل مالون دی آلدئید، دی تیروزین و دی هیدروکسی گوآنوزین ارزیابی شد. بررسی نتایج نشان داد اختلاف معنی داری در تیمارهای سدیم کربنات آب آبیاری و عملکرد در سطح یک درصد وجود داشت به طوری که مقایسه میانگین تیمارها بیانگر کاهش 3/41 درصدی عملکرد دانه در مقادیر بالای سدیم کربنات نسبت به شاهد بود. نتایج نشان داد که سطح فعالیت نشانگرهای شیمیایی به شدت تحت تاثیر سدیم کربنات آب آبیاری بود و موجب افزایش آنها شد. به طورکلی، در این آزمایش رقم والفجر مقاوم تر به میزان بالاتر سدیم آب آبیاری شناخته شد. بر این اساس می توان از میزان نشانگرهای شیمیایی جهت گزینش ارقام مقاوم به شوری آب آبیاری استفاده کرد.
To evaluate the residual effects of sodium carbonate of irrigation water on barley (Hordeum vulgare) and chemical markers activity, an experiment was carried out in research field of Karaj Islamic Azad University in 2013 with split plot based on Completely randomize blocks design with four replications. In this experiment barely cultivars including Valfajr and Aras were in main plot and different rates of sodium carbonate of irrigation water in four levels (control,1, 2 and 3 meq lit–1) were in sub plot. In this experiment the traits such as grain yield, 1000 seed weight and the rate of chemical markers such as malon dialdehyde, di tyrosine and di hydroxy guanosine were assayed. The results showed that there was significant difference between sodium carbonate of irrigation water and cultivar treatments at 1% level also mean comparison represent decreased about 41.3% of grain yield with affected by high rates of sodium carbonate in comparison with control. The results also revealed that the level activity of chemical markers was highly affected by sodium carbonate of irrigation water and caused increasing them. In general, Valfajr identified as more resistant cultivar to sodium of irrigation water. Moreover, the rate of chemical markers can be used in selected resistant cultivars to salinity of irrigation water.
ایلیکایی، م. ن.، د. حبیبی، ف. پاک نژاد و د. فتح الله طالقانی. 1392. اثرات آب آبیاری شور بر مارکرهای شیمیایی در ارقام مختلف جو. دانشگاه آزاد اسلامی واحد کرج. مجله زراعت و اصلاح نباتات ایران. 6 (2): 39-30.
حبیبی، د.، س. عروج نیا و ع. ر. پازکی.1391. بررسی تغییرات گونه های اکسیژن فعال و عملکرد در ژنوتیپ های مختلف جو تحت شرایط تنش شوری. دانشگاه آزاد اسلامی واحد کرج. مجله زراعت و اصلاح نباتات. 8 (5): 55-44.
نجفیان، گ.، م. جلالی کمالی و ج. عظیمیان. 1392. اثر شوری بر ارقام تجاری جو کشت شده در ایران. نشر آموزش کشاورزی. مجله آموزش و تحقیقات کشاورزی. 3 (6): 79-67.
Agca, C.A., M. Tuzcu and K. Sahin. 2014. Sodium of irrigation water via regulating malon dialdehyde and signaling in barley. J. Chem. Toxicol. 68: 155-166.
Beuchat, L.R., F. Fanning and H. Kuile. 2013. Reactive oxygen activity concern as vehicles of environmental stresses. J. Crop Protec. 75(3): 202-214.
Biard, C., D. Gil, F. Karadas and C.N. Spottiswoode. 2012. Maternal effects mediated by irrigation water and the evolution of dehydration signals in barley. Natural J. 69: 538-548.
Bogdanov, M.F. and M.B. Bical. 1999. A carbon column based LCEC approach to routine 8-oH-dg measurements in biological matrices. Free Radical Medical. 27: 643-666.
Buhler, A.G., D.R. Heldman and B.P. Marks. 2015. Evaluation of salt stress in controlling reactive oxygen on barley. Apply Crop Stress. 52(3): 478-501.
Casas-Grajales, S., and P. Muriel. Chemical markers in response to saline soils in barley genotypes. World J. Chem. Stress. 8: 166-175.
Couloigner, F., M. Jlali, and P.A. Geraert. 2015. Sodium deposition kinetics of different saline water sources in barley. Water Sci. 75: 314-322.
Deeming, D.C. and T.W. Pike. 2013. Barley growth and markers provision in saline soils. Biol.Chem. 10(4): 550-561.
Delezie, E., M. Rovers, A. Vander, A. Ruttens and L. Segers. 2014. Comparing responses to different sodium sources and dosages of carbohydrates in soils. Soil Sci. 93: 215-223.
FAO. 2014. Classiffication of cereal zones in the world pp.43-60.
Fisinin, V.I. and P.F. Surai. 2013. Immunity in sodium banding with proteins: from theory to practical aspects of markers destruction. Russian Sci Biol. 16: 127-136.
Harris, L.J., A.R.Uesugi, S. Abd and K.L. McCarthy. 2015. Oxidative damage on barley kernels in saline water treatments. Food Res. 46 (3): 760-772.
Jing, C.L., Dong, X.F. and J.M. Tong. 2015. Comparative study of saline water on malon dialdehyde activity and sodium status in barley. Chemical Sci. 75: 740-751.
Keppler, S., S. Bakalis, C.E. Leadley and P.J. Fryer. 2015. A systematic study of chemical markers in a vibrating apparatus used for saline processing in barley. Innov. Food Sci. 48: 334-343.
Khatoon, A., M. Zargham Khan, A. Khan and I. Javed. 2013. Destruction of RNA induced toxic effects by sodium and 8-oH-dg. J. Toxicol. 9: 78-91.
Loss, S. P. and K. H. M. Siddique. 2011. Morphological and physiological traits associate with CaSo4 in solonetz soils. Adv. Agron. 301: 881-889.
Madrigal-Santill, E., E. Madrigal-Bujaidar and I. Sumaya. 2014. Review of markers with protective effects in barley. World J. Chem. 19: 189-205.
Marri, V. and H. Richner. 2014. Sodium carbonate role on markers in barley. Oecologia. 169: 445-452.
Miller, T. and P. Smith. 2012. Effects of sodium on genes of malondialdehyde in response to water deficit stress. Plant Physiol. 514: 335-350.
Müller, W., J. Vergauwen, M. Eens and J.D. Blount. Environmental effect the shape of oxygen transfer in barley tissues. Front Biol. 12: 849-861.
Neetoo, H. and H. Chen. 2011. Individual and combined application of saline water with high hydrostatic pressure to activate markers on barley seeds. Food Microbiol. 28(1): 119-127.
Shimada, K., C.J. Jong and S.W. Schaffer. 2015. Role of ROS production and sodium in markers activity of barley. Adv. Medical Biol. 579: 188-197.
Steven, H. and M.H. Sidney. 2006. Markers as measured by liquid chromatography separation of malondialdehyde tiobarbituric acid. Eline Chem. 145: 546-562.
Tarique, T.M., S. Yang, Z. Mohsina and G. Chen. 2014. Identification of genes in regulatory mechanism of markers in barley. Genetic Res. 27: 498-509.
Xiao, X., D. Yuan, Y.X. Wang and X.A. Zhan. 2015. The effects of sources of different maternal sodium of soil on malondialdehyde stressed in barley. Biol. Trace Res. 25: 602-615.
Zaharieva, T. B., Y. Gogorcena and J. Abadía. 2011. Dynamics of metabolic responses to sulphate and sodium carbonate in cereals. Plant Sci. 25: 613–623.
Zwer, P.K. and B. Klepper. 2012. Markers activity due to sulphate, carbonate and P in crops. Crop Sci. 210: 1905-1911.
_||_