بررسی تاثیر روشهای مختلف خاکورزی بر انتشار گاز Nitrous oxide (N2O) و آمونیاک (NH3) در تناوب پنبه- گندم در منطقه داراب
محورهای موضوعی : مجله علمی- پژوهشی اکوفیزیولوژی گیاهیابوالقاسم قیصری 1 , محمدرضا اصغری پور 2 , سید محسن موسوی نیک 3 , سید احمد قنبری 4
1 - دانشجوی دکتری آگرواکولوژی، دانشکده کشاورزی، دانشگاه زابل، زابل، ایران.
2 - گروه آگرواکولوژی، دانشکده کشاورزی، دانشگاه زابل، زابل، ایران
3 - گروه زراعت، دانشکده کشاورزی، دانشگاه زابل، زابل، ایران
4 - گروه آگرواکولوژی، دانشکده کشاورزی، دانشگاه زابل، زابل، ایران
کلید واژه: بیخاکورزی, اکسید نیتروز, نیتراتزدایی, مدل DNDC, چرخه نیتروژن,
چکیده مقاله :
برخی از روشهای خاکورزی بدون افزایش عملکرد باعث هدر رفت منابع و انتشار گازهای گلخانهای میشوند. به منظور تعیین اثر روشهای مختلف خاکورزی بر میزان انتشار اکسید نیتروز و آمونیاک در تناوب پنبه-گندم آزمایشی در قالب طرح بلوکهای کامل تصادفی با 3 تیمار در 4 تکرار در ایستگاه تحقیقات کشاورزی داراب بهمدت پنج سال انجام گرفت. تیمارهای تحقیق شامل کشت مستقیم ، کمخاکورزی و خاکورزی مرسوم گندم و پنبه (شاهد) بود. در تیمارهای کشت مستقیم و کم خاکورزی پس از برداشت گندم 30 درصد وزنی از بقایای گندم در مزرعه پخش گردید. برآورد انتشار گاز N2O و NH3 از مزرعه پنبه در تناوب با گندم با استفاده از مدل DNDC9.5، در سالهای چهارم و پنجم کاشت انجام شد. دادههای سه سال ابتدایی پژوهش جهت اعتبارسنجی مدل استفاده شد. نتایج اعتبارسنجی مدل نشان داد که مدل در شبیهسازی محیط خاک و انتشار گازهای N2O و NH3 به خوبی عمل میکند. نتایج شبیهسازی نشان داد که میزان انتشار N2O در خاکورزی مرسوم با اختلاف معنیدار، بیشترین مقدار و در بیخاکورزی کمترین مقدار را داشت. میانگین سالیانه انتشار N2O در پنج سال برای تیمارهای خاکورزی مرسوم، خاکورزی حداقل و بیخاکورزی بهترتیب 40/4، 80/2 و 14/2 کیلوگرم نیتروژن در هکتار در سال بود. اوج انتشار NH3 از خاک در هر سه تیمار در روز پنجم بعد از هر بار کوددهی اتفاق افتاد. براساس نتایج بهدست آمده از این بررسی، استفاده از روش بیخاکورزی، مطلوبتر از سایر تیمارهای کشت پنبه در کشت دوگانه گندم- پنبه در شرایط مشابه با مطالعه حاضر میباشد.
Conventional tillage methods with no yield increase lead to the loss of resources and emission of greenhouse gases into the environment. To determine the effects of different tillage methods on nitrous oxide (N2O) and ammonia (NH3) emissions in cotton-wheat rotation, an experiment was designed as a randomized complete block including three treatments with four replications at Darab Agricultural Research Station during 5 years. The treatments consisted of direct drilling (no tillage), minimum tillage, and conventional tillage (as control). After harvesting wheat in the no and minimum tillage treatments, 30% (weight) of wheat residues was retained on the field. N2O and NH3 emissions from the cotton-wheat field were estimated using the DNDC 9.5 model in the last two years. Data of three initial years of the research were used for model validation. Results of model validation showed that the model worked well in simulating the soil environment and N2O and NH3 emissions. The simulation results revealed that the highest and lowest N2O emission rates was achieved under conventional and no-tillage treatments, respectively. Average annual N2O emissions of 4.40, 2.80, and 2.14 kg N/ha/y were recorded in conventional, minimum, and no-tillage treatments, respectively. According to simulation results, peak emission of NH3 from soil occurred on five days after each fertilization in all three treatments. In general, results showed that no-tillage method was more favorable than other cotton cultural practices in cotton-wheat rotation in conditions similar to the present study.
محمدی، خ.، غ. ر. حیدری، م. جواهری و م. آقاعلیخانی. 1391. تاثیر سیستمهای مختلف خاکورزی و کوددهی بر توده زنده میکروبی و فعالیت آنزیمی خاک در زراعت آفتابگردان. مجله آب و خاک (علوم و صنایع غذایی). جلد 26، شماره 1: 113-104.
Almaraz, J. J., F. Mabood, X. M. Zhou, C. Madramootoo, P. Rochette, B. L. Ma, and D. L. Smith. 2009. Carbon dioxide and nitrous oxide fluxes in corn grown under two tillage systems in southwestern Quebec. Soil Sci. Soc. Am. J. 73: 113–119.
Baggs, E. M., M. Stevenson, M. Pihlatie, A. Regar, H. Cook and G. Cadisch. 2003. Nitrous oxide emissions following application of residues and fertilizer under zero and conventional tillage. Biol. Fert. Soils. 254: 361–370.
Bayer, C., F. D. Costa, G. M. Pedroso, T. Zschornack, E. S. Camargo, M. A. de Lima, R. T. S. Frigheto, J. Gomes, E. Marcolin and V. R. M. Macedo. 2014. Yield-scaled greenhouse gas emissions from flood irrigated rice under long-term conventional tillage and no-till systems in a humid subtropical climate. Field Crops Res. 162: 60–69.
Boeckx, P., Van K. Nieuland, and Van O. Cleemput. 2011. Short-term effect of tillage intensity on N2O and CO2 emissions. Agron. Sustain. Dev. 31: 453-461.
Bureau, J., A. Grossel, B. Loubet, P. Laville, R. Massad, E. Haas, K. Butterbach-Bahl, C. Guimbaud and C. Hénault. 2017. Evaluation of new flux attribution methods for mapping N2O emissions at the landscape scale. Agri. Ecosys. and Environ. 247: 9-22.
Cai, Z., T. Sawamoto, C. Li, G. Kang, J. Boonjawat, A. Mosier, R. Wassmann and H. Tsuruta. 2003. Field validation of the DNDC model for greenhouse gas emissions in East Asian cropping systems. Global Biogeochemical Cycles. 17: 1107-1117.
Charles, A., P. Rochette, J. Whalen, D. A. Angers, M. H. Chantigny and N. Bertrand. 2017. Global nitrous oxide emission factors from agricultural soils after addition of organic amendments: A meta-analysis. Agri. Ecosys. and Environ. 236: 88-98.
Chatskikh, D., J. R. E. Olesen, E. M. Hansen, L. Elsgaard, and B. R. M. Petersen. 2008. Effects of reduced tillage on net greenhouse gas fluxes from loamy sand soil under winter crops in Denmark. Agri. Ecosys. and Environ. 128: 117-126.
Chen, H., C. Yu, C. Li, Q. Xin, X. Huang, J. Zhang, Y. Yue, G. Huang, X. Li and W. Wang. 2016. Modeling the impacts of water and fertilizer management on the ecosystem service of rice rotated cropping systems in China. Agri. Ecosys. and Environ. 219: 49-57.
Ciais, P., C. Sabine, G. Bala, L. Bopp, V. Brovkin, J. Canadell, A. Chhabra, R. DeFries, J. Galloway, M. Heimann, C. Jones, Le Quéré, C. R. B. Myneni, S. Piao and P. Thornton. 2013. Carbon and other biogeochemical cycles. In: Stocker, T. F., D. Qin, G. K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P. M. Midgley. (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. pp. 465–570.
Dendooven, L., L. Patino-Zuniga, N. Verhulst, M. Luna-Guido, R. Marsch, and B. Govaerts. 2012. Global warming potential of agricultural systems with contrasting tillage and residue management in the central highlands of Mexico. Agri. Ecosys. and Environ. 152: 50–58.
Deng, X., X. Chen, W. Ma, Z. Ren, M. Zhang, M. L. Grieneisen, W. Long, Z. Ni, Y. Zhan and X. Lv. 2018. Baseline map of organic carbon stock in farmland topsoil in East China. Agri. Ecosys. and Environ. 254: 213-223.
Elmi, A. A., C. Madramootoo, C. Hamel, and A. Liu. 2003. Denitrification and nitrous oxide to nitrous oxide plus dinitrogen ratios in the soil profile under three tillage systems. Biol. Fertil. Soils. 38: 340–348.
Fang, Q. X., L. Ma, A. D. Halvorson, R. W. Malone, L. R. Ahuja and S. J. Del Grosso. 2015. Evaluating four nitrous oxide emission algorithms in response to N rate on an irrigated corn field. Environ. Model. Software. 72: 56–70.
Fittona, N., A. Dattab, J. M. Cloyc, R. M. Reesc, C. F. E. Toppc, M. J. Bellc, L. M. Cardenasd, J. Williamse, K. Smithe, R. Thormane, C. J. Watsong, K. L. McGeoughg, M. Kuhnerta, A. Hastingsa, S. Anthonye, D. Chadwickf and P. Smitha. 2017. Modelling spatial and inter-annual variations of nitrous oxide emissions from UK cropland and grasslands using DailyDayCent. Agri. Ecosys. and Environ 250: 1-11.
Franquevillea, D., C. Benhamoua, C. Pasquierb, C. Hénaultb and J. L. Droueta. 2018. Modelling reactive nitrogen fluxes and mitigation scenarios on a landscape in Central France. Agri. Ecosys. and Environ 246: 92-110.
Giltrap, D. L., C. Li and S. Saggar. 2010. DNDC: A process-based model of greenhouse gas fluxes from agricultural soils. Agri. Ecosys. and Environ. 136: 292-300.
Grant, B., W. N. Smith, R. Desjardins, R. Lemke and C. Li. 2004. Estimated N2O and CO2 emissions as influenced by agricultural practices in Canada. Clim. Change. 65: 315-332.
Harrison, R., S. Ellis, R. Cross and J. H. Hodgson. 2002. Emissions of nitrous oxide and nitric oxide associated with the decomposition of arable crop residues on a sandy loam soil in Eastern England. Agronomie (France). 22: 731–738
Jantalia, C. P., H. P. Dos Santos, S. Urquiaga, R. M. Boddey and B. J. R. Alves. 2008. Fluxes of nitrous oxide fromsoil under different crop rotations and tillage systems in the South of Brazil. Nutr. Cycl. in Agroecosys. 82: 161–173.
Johnson, J. M. F. and N. W. Barbour. 2010. Crop yield and greenhouse gas responses to stover harvest on glacial till Mollisol. 19th World Congress of Soil Science: Soil solutions for a changing world. 1-6 August 2010, Brisbane, Australia.Pp 36-39.
Li, C. 1995. Impact of agricultural practices on soil C storage and N2O emissions in 6 states in the US. In: Advances in Soil Science (eds. R. Lai et al.), Soil Management and Greenhouse Effect. USA, CRC Press. Pp.101-112.
Li, C. 2000. Modeling trace gas emissions from agricultural ecosystems. Nutr. Cycl. in Agroecosys. 58: 259-276.
Li, C. 2009. User’s Guide for the DNDC Model (Version 9.3). Report of the Institute for the Study of Earth, Oceans and Space. (Durham, NH, USA).
Li, C., S. Frolking and R. Harriss. 1994. Modeling carbon biogeochemistry in agricultural soils. Global Biogeochemical Cycles. 8: 237-254.
Li, H., J. Qiu, L. Wang, H. Tang, C. Li and E. Van Ranst. 2010. Modelling impacts of alternative farming management practices on greenhousegas emissions from a winter wheat–maize rotation system in China. Agri. Ecosys. and Environ. 135: 24-33.
Liang, L. L., D. I. Campbell, A. M. Wall and L. A. Schipper. 2018. Nitrous oxide fluxes determined by continuous eddy covariance measurements from intensively grazed pastures: Temporal patterns and environmental controls. Agri. Ecosys. and Environ. 268: 171-180.
Liu, C., M. Lu, J. Cui, B. Li and C. Fang. 2014. Effects of straw carbon input on carbon dynamics in agricultural soils: a meta-analysis. Global Change Biol. 20: 1366–1381.
Mielenz, H., P. J. Thorburn, C. Scheer, M. D. A. Migliorati, P. R. Grace and M. J. Bell. 2016. Opportunities for mitigating nitrous oxide emissions in subtropical cereal and fiber cropping systems: A simulation study. Agri. Ecosys. and Environ. 218: 11-27.
Omonode, R. A., T. J. Vyn, D. R. Smith, P. Hegymegi and A. Gal. 2007. Soil carbon dioxide and methane fluxes from long term tillage systems in continuous corn and corn–soybean rotations. Soil Till. Res. 95: 182–195.
Pandey, D., M. Agrawal and J. S. Bohra. 2012. Greenhouse gas emissions from rice crop with different tillage permutations in rice–wheat system. Agri. Ecosys. and Environ. 159: 133–144.
Pandey, D., M. Agrawal and J. S. Bohra. 2013. Impact of four tillage permutations in rice–wheat system on GHG performance of wheat cultivation through carbon footprinting. Ecological Engineering. 60: 261– 270.
Paul, E. A. 2007. Soil microbiology, ecology and biochemistry: (3rd ed.). Academic Press, London, UK.
Rinaldi, M., N., Losavio and Z. Flagella. 2003. Evaluation and application of the OILCROP-SUN model for sunflower in southern Italy. Agric. Sys. 78: 17-30.
Rochette, P., M. Angers, H. Chantigny and N. Bertrand. 2008. N2O emissions respond differently to no-till in a loam and a heavy clay soil. Soil Sci. Soc. Am. J. 72: 1363-1369.
Singh, B., Y. H. Shan, S. E. Johnson-Beebout, Y. Singh and R. J. Buresh, 2008. Crop residue management for lowland rice based cropping systems in Asia. Adv. Agron. 98: 117–199.
Smith, D. R., G. Hernandez-Ramirez, S. D. Armstrong, D. L. Bucholtz and D. E. Stott. 2011. Fertilizer and tillage management impacts on noncarbon dioxide greenhouse gas emissions. Soil Sci. Soc. Am. J. 75: 1070–1082.
Smith, P., D. Martino, Z. Cai, D. Gwary, H. Janzen, P. Kumar, B. Mccarl, S. Ogle, F. O’Mar, C. Rice, B. Scholes, O. Sirotenko, M. Howden, T. McAllister, G. Pan, V. Romanenkov, U. Schneider and S. Towprayoon. 2007. Policy and technological constraints to implementation of greenhouse gas mitigation options in agriculture. Agri. Ecosys. and Environ. 118: 6-28.
Song, X. D., J. Y. Yang, M. S. Zhao, G. L. Zhang, F Liu and H. Y. Wu. 2019. Heuristic cellular automaton model for simulating soil organic carbon under land use and climate change: A case study in eastern China. Agri. Ecosys. and Environ. 269: 156-166.
Syp, A., A. Faber, J. Kozyra, R. Borek, R. Pudelko, M. Borzęcka-Walker and Z. Jarosz. 2011. Modeling impact of climate change and management practices on greenhouse gas emissions from arable soils. Pol. J. Environ. Stud. 20: 1593-1602.
Ussiri, D. A. N. and R. Lal. 2009. Long-term tillage effects on soil carbon storage and carbon dioxide emissions in continuous corn cropping system from an Alfisol in Ohio. Soil Till. Res. 104: 39–47.
Uzoma, K. C., W. Smith, B. Grant, R. L. Desjardins, X. Gao, K. Hanis, M. Tenuta, P. Goglio and C. Li. 2015. Assessing the effects of agricultural management on nitrous oxide emissions using flux measurements and the DNDC model. Agri. Ecosys. and Environ. 206: 71–83.
Zhang, L., J. Zheng, L. Chen, M. Shen, X. Zhang, M. Zhang, X. Bian, J. Zhang and W. Zhang. 2015. Integrative effects of soil tillage and straw management on crop yields and greenhouse gas emissions in a rice–wheat cropping system. Euro. J. Agron. 63: 47–54.
UNEP. 2013. Drawing down N2O. To Protect Climate and the Ozone Layer.
_||_