ارزیابی کارایی متقاطع مدارس دوره دوم متوسطه شهر سراب تحت بازده به مقیاس متغیر و ثابت
محورهای موضوعی : مدیریت عملیات
صبا صادقی گاوگانی
1
*
,
اکبر ولی زاده اوغانی
2
1 - استادیار گروه ریاضی، واحد سراب، دانشگاه آزاد اسلامی، سراب، ایران سراب
2 - استادیار گروه مدیریت، واحد سراب، دانشگاه آزاد اسلامی، سراب، ایران
کلید واژه: تحلیل پوششی دادهها, واحد تصمیمگیری, کارایی متقاطع, بازده به مقیاس,
چکیده مقاله :
یکی از مشکلات اصلی تحلیل پوششی داده ها، انعطافپ ذیری درانتخاب اوزان ورودی- خروجی است که سبب انتخاب وزنهای غیرمنصفانه می شود. در جهت حل این مساله روش کارایی متقاطع با هدف محاسبه نمره کارایی از طریق ارزیابی با همرده ها و خودارزیابی مطرح می شود که این علاوه بر آن در جهت رتبه بندی واحدها حائز اهمیت است. پژوهش حاضر از لحاظ هدف، کاربردی و با ماهیت توصیفی انجام شده است و به توسعه رویکرد ارزیابی کارایی متقاطع تحت بازده به مقیاس ثابت و بازده به مقیاس متغیر در مدارس دوره دوم متوسطه شهر سراب پرداخته است. داده های مورد نیاز از نظرات افراد خبره و آرشیو کتابخانه ای مدارس در سال تحصیلی 1401-1402 استخراج شده است. برای تجزیه و تحلیل داده ها از نرم افزار گمز استفاده شده است. نتایج نشان می دهد که دبیرستان دخترانه اسبفروشان بعنوان کاراترین واحد از لحاظ بازده به مقیاس ثابت و متغیر انتخاب گردید. با مقایسه بین نمرات کارایی برای تمامی مدارس، به این نتیجه رسیدیم که مدارس ابرغان، شهید قاضی و کلیان در ارزیابی کارایی متقاطع توسط بازده به مقیاس متغیر و مدارس شهید قاضی، کلیان و ابرغان در ارزیابی کارایی متقاطع توسط بازده به مقیاس ثابت به ترتیب در رتبه های دوم، سوم و چهارم قرارگرفتند. در دو حالت بازده به مقیاس ثابت و متغیر روش کارایی متقاطع نتایج تقریبا یکسانی دارد ولی در اغلب موارد روش بازده به مقیاس متغیر، نتایج رتبه بندی را واقعی تر و منطقی تری نمایش می دهد.
One of the main problems of DEA is the flexibility in choosing input-output weights, which leads to the selection of unfair weights. To solve this problem, the cross-efficiency method is proposed with the aim of calculating the efficiency score through peer evaluation and self-evaluation, which is also important for ranking units. The present study is applied and descriptive in nature in terms of purpose and has developed a cross-efficiency evaluation approach under fixed returns to scale and variable returns to scale in the second-cycle secondary schools of Sarab city. The required data were extracted from the opinions of experts and the school library archives in the academic year 1401-1402. GAMS software was used to analyze the data. The results show that Asbfuroshan Girls' High School was selected as the most efficient unit in terms of fixed and variable scale efficiency. In comparing the efficiency scores for all schools, we concluded that Aberghan, Shahid Ghazi, and Kalyan schools ranked second, third, and fourth, respectively, in evaluating cross-efficiency by variable-scale returns, and Shahid Ghazi, Kalyan, and Aberghan schools ranked third and fourth, respectively, in evaluating cross-efficiency by fixed-scale returns. In both cases of constant and variable returns to scale, the cross-efficiency method has almost the same results, but in most cases, the variable returns to scale method displays the ranking results more realistically and logically.
Asadi, B. & Nasseri, H. & Hosseinzade-Lotfi, F. (2020). Cross-inefficiency with the Variable Returns to Scale in DEA. International Journal of Industrial Mathematics. 12, 345-355.
Badri, M. & Borzooian, S. & Mohamadian, Z. (2021). Evaluating the efficiency of education with an emphasis on resource specialization: superior efficiency (case study of the northern Khorasan education regions) Educational innovations. 80,187-208. (In Persian)
Banker, R.D. & Charnes, A. & Cooper, W.W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management science. 30, 1078-1092.
Charnes, A. & Cooper, W.W. & Rhodes, E. (1978). Measuring the efficiency of decision making units. European journal of operational research. 2, 429-444.
Doyle, J. & Green, R. (1994). Efficiency and cross-efficiency in DEA: Derivations, meanings and uses. Journal of the operational research society. 45, 567-578.
Ganji, S.S. & Rassafi, A. & Xu, D.L. (2019). A double frontier DEA cross efficiency method aggregated by evidential reasoning approach for measuring road safety performance. Measurement. 136, 668-688.
Guo, X. & Chen, L. (2023). DEA-BWM cross efficiency target setting with preferences. Computers & Industrial Engineering. 183, 109525.
Hadi-Vencheh, A. & Khodadadipour, M. & Tan, Y. & Arman, H. & Roubaud, D. (2024). Cross-efficiency analysis of energy sector using stochastic DEA: Considering pollutant emissions. Journal of Environmental Management. 364, 121319.
Haji Hosseiny, A. & Payan, A. & Salari, A. (2020). Accurate and Imprecise Evaluation of the Relative Efficiency of the Eleventh Grade of Non-Government Schools in Sistan and Baluchestan Province Using Data Envelopment Analysis. Journal of Decision and Operational Research. 5(1), 34-47.(In Persian)
Huang, X. & Jin, H. & Bai, H. (2019). Vulnerability assessment of China's coastal cities based on DEA cross-efficiency model. International Journal of Disaster Risk Reduction. 36, 101091.
Jiang, X. & Zhan, Z. & Ren, W. & Tao, X. & Zheng, S. & Luo, M. (2025). Balancing economic and environmental strategies in regional hinterland transport: A dynamic network cross efficiency analysis. Transport Policy. 162, 128-154.
Liang, L. & Wu, J. & Cook, W.D. & Zhu, J. (2008). Alternative secondary goals in DEA cross-efficiency evaluation. International Journal of Production Economics. 113, 1025-1030.
Lim, S. & Zhu, J. (2015). DEA cross-efficiency evaluation under variable returns to scale. Journal of the Operational Research Society. 66, 476-487.
Liu, H.H. & Song, Y.Y. & Liu, X.X. & Yang, G.L. (2020). Aggregating the DEA prospect cross-efficiency with an application to state key laboratories in China. Socio-Economic Planning Sciences. 71, 100809.
Mello, J.C.C.B.S.D. & Lins, M.P.E. & Gomes, E.G. (2002). Contruction of a smoothed DEA frontier. Pesquisa operacional. 22, 183-201.
Oukil, A. (2020). Exploiting value system multiplicity and preference voting for robust ranking. Omega. 94, 102048.
Rasoulzadeh, M. & Edalatpanah, S.A. & Fallah, M. & Najafi, S.E. (2022). A multi-objective approach based on Markowitz and DEA cross-efficiency models for the intuitionistic fuzzy portfolio selection problem. Decision making: applications in management and engineering. 5, 241-259.
Sadeghi-Gavgani, S. & Zohrehbandian, M. (2014). A Cross‐Efficiency Based Ranking Method for Finding the Most Efficient DMU. Mathematical Problems in Engineering. 2014, 269768.
Sexton, T.R. & Silkman, R.H. & Hogan, A.J. (1986). Data envelopment analysis: Critique and extensions. New directions for program evaluation. 1986, 73-105.
Wu, J. & Sun, J. & Liang, L. & Zha, Y. (2011). Determination of weights for ultimate cross efficiency using Shannon entropy. Expert Systems with Applications. 38, 5162-5165.
Yang, Z. & Wei, X. (2019). The measurement and influences of China's urban total factor energy efficiency under environmental pollution: Based on the game cross-efficiency DEA. Journal of cleaner production. 209, 439-450.
Zhang, W. & Wu, X. & Shi, J. (2023). Cross efficiency model of network DEA and its application on low carbon efficiency evaluation of multimodal transport. Ocean & Coastal Management. 244, 106778.
Zhou, L. & Zhang, R. & Li, A. (2022). New concepts for bootstrap-based cross-efficiency and relative weight analysis and an application to China's governance-finance-innovation-sustainability system. Journal of Cleaner Production. 379, 134549.
Ziadi, M. & Fallah-Jelodar, M. (2015). Evaluating the efficiency and ranking of schools in Firoozkouh County using the Data Envelopment Analysis Model. Industrial Strategic Management. 37, 57-70. (In Persian)
Zohrehbandian, M. & Gavgani, S. S. (2013). Cross-efficiency evaluation under the principle of rank priority of DMUs. World Applied Sciences Journal. 21, 46-49.