تعمیم نامساوی کارلمان با استفاده از ماتریس های پایین مثلثی نامتناهی
محورهای موضوعی : آمارغلامرضا طالبی 1 * , علی ابراهیمی میمند 2
1 - گروه ریاضی (آنالیز ریاضی)، دانشکده علوم ریاضی، دانشگاه ولی عصر (عج)، رفسنجان، ایران
2 - گروه ریاضی (آنالیز ریاضی)، دانشکده علوم ریاضی، دانشگاه ولی عصر (عج)، رفسنجان، ایران
کلید واژه: Borel probability measure, Hausdorff matrix, Hardy&rsquo, s inequality, Norlund matrix,
چکیده مقاله :
فرض کنیدH_μ=(h_(n,k) )_(n,k≥0) ماتریس هاسدورف وابسته به اندازه بورل احتمال باشد. گراهام بنت در سال1996 نامساوی [sumlimits_{n = 0}^infty {prodlimits_{k = 0}^n {{{left| {{x_k}} right|}^{{h_{n,k}}}}} } le {e^{int_0^1 {|log theta |dmu (theta )} }}sumlimits_{n = 0}^infty {left| {{x_n}} right|} .]را به عنوان تعمیمی از نامساوی کارلمان معرفی کرد. در این مقاله نشان می دهیم که ماتریس هاسدورف در نامساوی فوق را می توان با هر ماتریس پایین مثلثی [A = {left( {{a_{n,k}}} right)_{n,k ge 0}}]با مجموع سطرهای واحد جایگزین نمود، به شرط آنکه ثابت سمت راست در این نامساوی با[left( {mathop {inf }limits_{p > 1} left| A right|_p^p} right)]جایگزین شود. به عنوان نتیجه، نامساوی های جدیدی را که به واسطه ماتریس های پایین مثلثی خاص مانند نورلوند و میانگین وزن دار به دست می آیند، معرفی می کنیم. همچنین نشان می دهیم که برابر واحد بودن مجموع درایه های هر سطر ماتریس یک شرط اساسی است.
Let H_μ=(h_(n,k) )_(n,k≥0) be the Hausdorff matrix associated with the probability measure . Graham Bennett in 1996 established the following extension of Carleman's inequality[sumlimits_{n = 0}^infty {prodlimits_{k = 0}^n {{{left| {{x_k}} right|}^{{h_{n,k}}}}} } le {e^{int_0^1 {|log theta |dmu (theta )} }}sumlimits_{n = 0}^infty {left| {{x_n}} right|} .,,,,,,,(1)]In this paper we show that the Hausdorff matrix in (1) can be replaced by any lower triangular matrix [A = {left( {{a_{n,k}}} right)_{n,k ge 0}}]for which the sum of each rows is one, provided that the constant in the right hand side, be replaced by[left( {mathop {inf }limits_{p > 1} left| A right|_p^p} right)]. . . . . . . . . As a consequence, we apply our results to Norlund matrices and weighted mean matrices to establish some new inequalities. Further, we show that being equal to 1 is an essential condition for the rows sum of A.
[1] F. Hausdorff. Summationsmethoden und Momentfolgen I. Mathematische Zeitschrift 9: 75-109 (1921).
[2] T. Carleman. Sur les fonctions quasi-analytiques. Comptes rendus, du Congres des Mathematiciens Scandinaves, Helsingfors 181 – 196 (1922).
[3] G. Bennett. Factorizing the classical inequalities. Memoirs of the American Mathematical Society: 120 (576) 1-130 (1996).
[4] G. B. Folland. Real Analysis: Modern techniques and their applications. A Wiley Series of Texts, Monographs and Tracts, 2nd edition, Kindle Edition (2013).
[5] J. Boos. Classical and Modern Methods in Summability. Oxford University Press, New York (2000).
[6] G. H. Hardy. An Inequality for Hausdorff mean. Journal of the London Mathematical Society 18: 46 – 50 (1943).
[7] G. H. Hardy, J. E. Littlewood, G. Polya. Inequalities. 2nd edition, Cambridge University Press (1967).
[8] R. Lashkaripour, D. Forotannia. Extension of Hardy Inequality on Weighted Sequence Spaces. Journal of Sciences, Islamic Republic of Iran 20(2): 159-166 (2009).
[9] K. Endl. Untersuchungen über Moment Probleme bei Verfahren vom Hausdorffschen Typus. Mathematische Annalen 139: 403- 432 (1960).
[10] A. Jakimovski. The product of summability methods. New classes of transformations and their properties. Part 2 Tech. note, Contract No. AF 61: (1959) (052)187.
[11] A. Jakimovski, B. E. Rhoades, J. Tzimbalario. Hausdorff matrices as bounded operators over . Mathematische Zeitschrift 138: 173 -181 (1974).