کران های دقیق نرم مشتق شبه شوارتزین برخی توابع ستاره وار خاص
محورهای موضوعی : آمار
1 - استادیار گروه ریاضی، دانشگاه آزاد اسلامی، واحد تهران غرب، تهران، ایران
کلید واژه: Starlike, Subordination, Univalent functions, Locally univalent functions, Unit disc,
چکیده مقاله :
فرضکنید A ردۀ توابع تحلیلی و نرمالشده در قرصیکۀ DELTA باشد. همچنین زیرردۀ U از A را ردۀ توابع تکارز و LU را ردۀ توابع موضعاً تکارز درنظر میگیریم. برای هر تابع ب از ردۀ LU نرم آن را بهصورت زیر تعریف میکنیم: ||f||=sup_{zinDelta}(1-|z|^2)left|frac{f''(z)}{f'(z)}rightدر این مقاله کرانهای دقیقی برای نرم تابع ب با انتخابهای مناسب برای VARPHI که در رابطۀ تبعیت زیر صدق میکند پیدا میکنیم: $$(zf'(z))/(f(z))prec varphi(z)$$در رابطۀ بالا "PREC " نماد تبعیت است. همچنین $varphi تابعی تحلیلی است ,$Re{varphi(z)>0}$, $varpi(0)=1$
Let $Delta$ be the open unit disc in the complex plane $mathbb{C}$, i.e. $Delta={zin mathbb{C}:|z|< 1}$ and $mathcal{H}(Delta)$ be the class of functions that are analytic in $Delta$.Also, let $mathcal{A}subset mathcal{H}(Delta)$ be the class of functions that have the following Taylor--Maclaurin series expansionbegin{equation*} f(z)=z+sum_{n=2}^{infty} a_nz^nquad(zinDelta).end{equation*}Thus, if $finmathcal{A}$, then it satisfies the following normalized conditionbegin{equation*} f(0)=0=f'(0)-1.end{equation*}The set of all univalent (one--to--one) functions $f$ in $Delta$ is denoted by $mathcal{U}$. Also, we denote by $mathcal{LU}subset mathcal{H}$ the class of all locally univalent functions in $Delta$. Let $f$ and $g$ belong to class $mathcal{H}(Delta)$. Then we say that a function $f$ is subordinate to $g$, written bybegin{equation*} f(z)prec g(z)quad{rm or}quad fprec g,end{equation*}begin{linenomath}if there exists a Schwarz function $w$ with the following propertiesbegin{equation*} w(0)=0quad{rm and}quad |w(z)|0}$, $varpi(0)=1$ and $varphi'(0)>0$.
[1] P.L. Duren, Univalent Functions, Springer-Verlag, New York )1983(.
[2] J. Becker and Ch. Pommerenke. Schlichtheitskriterien und Jordangebiete. Journal für die reine und angewandte Mathematik 354:74-94 (1984).
[3] S.S. Miller and P.T. Mocanu. Differential Subordinations, Theory and Applications, Series of Monographs and Textbooks in Pure and Applied Mathematics, Vol. 225, Marcel Dekker Inc., New York / Basel (2000).
[4] W.C. Ma, D. Minda, A unified treatment of some special classes of univalent function, in: Proceedings of the Conference on Complex Analysis (Tianjin, 1992), 157-169, Conf. Proc. Lecture Notes Anal., I, Int. Press, Cambridge, MA.
[5] F. Ronning. Uniformly convex functions and a corresponding class of starlike functions. Proceedings of the American Mathematical Society 118:189-196 (1993).
[6] J. Sokol and J. Stankiewicz. Radius of convexity of some subclasses of strongly starlike functions, Zeszyty Nauk. Politech. Rzeszowskiej Mat. 19:101-105 (1996).
[7] R. Mendiratta, S. Nagpal and V. Ravichandran. On a subclass of strongly starlike functions associated with exponential function. Bulletin of the Malaysian Mathematical Sciences Society 38:365-386(2015).
[8] N.E. Cho, V. Kumar, S.S. Kumar and V. Ravichandran. Radius problems for starlike functions associated with the sine function, Bulletin of the Iranian Mathematical Society 45: 213-232 (1993).
[9] R. Kargar, A. Ebadian and J. Sokol. On Booth lemniscate and starlike functions. Analysis and Mathematical Physics 9 (2019), 143-154.
[10] R.K. Raina and J. Sokol. On coefficient estimates for a certain class of starlike functions. Hacettepe Journal of Mathematics and Statistics 44:1427-1433 (2015).
[11] Z. Orouji and R. Aghalary. The norm estimates of pre-Schwarzian derivatives of spirallike functions and uniformly convex -spirallike functions. Sahand Communications in Mathematical Analysis 12:89-96 (2018).