سنتز و کاربرد مواد شیمیایی جدید برای کاهش ویسکوزیته نفت سنگین
محورهای موضوعی :
1 - گروه مهندسی شیمی، واحد امیدیه، دانشگاه آزاد اسلامی، امیدیه ، ایران
کلید واژه: نفت سنگین, ویسکوزیته, جریانپذیری, فرآیندهای استخراج,
چکیده مقاله :
نفت سنگین به دلیل ویسکوزیته بالا و جریانپذیری کم، چالشهای قابل توجهی در فرآیندهای استخراج و انتقال ایجاد میکند. در این پژوهش، سنتز و کاربرد مواد شیمیایی جدید برای کاهش ویسکوزیته نفت سنگین مورد بررسی قرار گرفته است. مواد شیمیایی سنتز شده شامل ترکیبات پلیمری، سورفکتانتها و نانوذرات هستند که بهعنوان افزودنیهای کاهشدهنده ویسکوزیته استفاده شدهاند. نتایج آزمایشها نشان میدهند که این مواد بهطور قابل توجهی ویسکوزیته نفت سنگین را کاهش داده و جریانپذیری آن را بهبود میبخشند. همچنین، تأثیر پارامترهای مختلف مانند دما، غلظت افزودنیها و ترکیب شیمیایی نفت بر عملکرد این مواد بررسی شده است. این مطالعه نشان میدهد که استفاده از مواد شیمیایی جدید میتواند بهعنوان یک راهحل مؤثر برای بهبود فرآیندهای استخراج و انتقال نفت سنگین مورد استفاده قرار گیرد.
Heavy oil, due to its high viscosity and low flowability, presents significant challenges in extraction and transportation processes. In this study, the synthesis and application of novel chemical additives for reducing the viscosity of heavy oil have been investigated. The synthesized chemicals include polymeric compounds, surfactants, and nanoparticles, which were used as viscosity-reducing agents. Experimental results indicate that these materials significantly lower the viscosity of heavy oil and enhance its flow characteristics. Furthermore, the effects of various parameters such as temperature, additive concentration, and the chemical composition of the oil on the performance of these agents were examined. The study demonstrates that the use of newly developed chemical additives can serve as an effective solution for improving heavy oil production and transportation processes.
1. Urquhart, R. Heavy oil transportation—Present and future. J. Can. Pet. Technol. 1986, 25.
2. Langevin, D.; Argillier, J.-F. Interfacial behavior of asphaltenes. Adv. Colloid Interface Sci. 2016, 233, 83–93.
3. Martínez-Palou, R.; Mosqueira, M.D.L.; Zapata-Rendón, B.; Mar-Juárez, E.; Bernal-Huicochea, C.; Clavel-López, J.D.L.C.; Aburto, J. Transportation of heavy and extra-heavy crude oil by pipeline: A review. J. Pet. Sci. Eng. 2011, 75, 274–282.
4. Briceno, M.I.; Salager, J.-L.; Bracho, C.L. Heavy Hydrocarbon Emulsions Making Use of the State of the Art in Formulation Engineering. In Encyclopedic Handbook of Emulsion Technology; Sjöblom, J., Ed.; Publ. Marcel Dekker: New York, NY, USA, 2001; Volume 20, pp. 455–495.
5. Anto, R.; Deshmukh, S.; Sanyal, S.; Bhui, U.K. Nanoparticles as flow improver of petroleum crudes: Study on temperature-dependent steady-state and dynamic rheological behavior of crude oils. Fuel 2020, 275, 117873.
6. Contreras–Mateus, M.D.; López–López, M.T.; Ariza-León, E.; Chaves-Guerrero, A. Rheological implications of the inclusion of ferrofluids and the presence of uniform magnetic field on heavy and extra-heavy crude oils. Fuel 2021, 285, 119184.
7. Ke, H.; Yuan, M.; Xia, S. A review of nanomaterials as viscosity reducer for heavy oil. J. Dispers. Sci. Technol. 2020, 1–12.
8. Sun, Y.; Yang, D.; Shi, L.; Wu, H.; Cao, Y.; He, Y.; Xie, T. Properties of nanofluids and their applications in enhanced oil recovery: A comprehensive review. Energy Fuels 2020, 34, 1202–1218.
9. Taborda, E.A.; Alvarado, V.; Cortés, F.B. Effect of SiO 2 -based nanofluids in the reduction of naphtha consumption for heavy and extra-heavy oils transport: Economic impacts on the Colombian market. Energy Convers. Manag. 2017, 148, 30–42.
10. Taborda, E.A.; Alvarado, V.; Franco, C.A.; Cortés, F.B. Rheological demonstration of alteration in the heavy crude oil fluid structure upon addition of nanoparticles. Fuel 2017, 189, 322–333.
11. Taborda, E.A.; Franco, C.A.; Lopera, S.H.; Alvarado, V.; Cortés, F.B. Effect of nanoparticles/nanofluids on the rheology of heavy crude oil and its mobility on porous media at reservoir conditions. Fuel 2016, 184, 222–232.
12. Taborda, E.A.; Franco, C.A.; Ruiz, M.A.; Alvarado, V.; Cortés, F.B. Experimental and theoretical study of viscosity reduction in heavy crude oils by addition of nanoparticles. Energy Fuels 2017, 31, 1329–1338.
13. Moreno-Castilla, C.; López-Ramón, M.V.; Fontecha-Cámara, M. Ángeles; Álvarez, M.; Mateus, L. Removal of phenolic compounds from water using copper ferrite nanosphere composites as fenton catalysts. Nanomaterials 2019, 9, 901.
14. Fontecha-Camara, M.A.; Moreno-Castilla, C.; López-Ramón, M.V.; Álvarez, M.A. Mixed iron oxides as Fenton catalysts for gallic acid removal from aqueous solutions. Appl. Catal. B Environ. 2016, 196, 207–215.
15. Yabuki, A.; Tanaka, S. Oxidation behavior of copper nanoparticles at low temperature. Mater. Res. Bull. 2011, 46, 2323–2327.
16. Chen, W.; Fan, Z.; Lai, Z. Synthesis of core-shell heterostructured Cu/Cu2O nanowires monitored by in situ XRD as efficient visible-light photocatalysts. J. Mater. Chem. A 2013, 1, 13862–13868.
17. Zhao, W.; Zhang, S.; Ding, J.; Deng, Z.; Guo, L.; Zhong, Q. Enhanced catalytic ozonation for NOx removal with CuFe2O4 nanoparticles and mechanism analysis. J. Mol. Catal. A Chem. 2016, 424, 153–161.
18. Cortés, F.B.; Ruiz, M.A.; Benjumea, P.; Patiño, E.; Franco Ariza, C.A. Kinetic and thermodynamic equilibrium of asphaltenes sorption onto nanoparticles of nickel oxide supported on nanoparticulated alumina. Fuel 2013, 105, 408–414.
19. Franco, C.A.; Montoya, T.; Nassar, N.N.; Pereira-Almao, P.; Cortés, F.B. Adsorption and subsequent oxidation of colombian asphaltenes onto nickel and/or palladium oxide supported on fumed silica nanoparticles. Energy Fuels 2013, 27, 7336–7347.
20. Nassar, N.N.; Hassan, A.; Pereira-Almao, P. Effect of the particle size on asphaltene adsorption and catalytic oxidation onto alumina particles. Energy Fuels 2011, 25, 3961–3965.
21. Nassar, N.N. Asphaltene adsorption onto alumina nanoparticles: Kinetics and thermodynamic studies. Energy Fuels 2010, 24, 4116–4122.
22. Franco, C.A.; Lozano, M.M.; Acevedo, S.; Nassar, N.N.; Cortés, F.B. Effects of resin I on asphaltene adsorption onto nanoparticles: A novel method for obtaining asphaltenes/resin isotherms. Energy Fuels 2016, 30, 264–272.
23. Nassar, N.N.; Franco, C.A.; Montoya, T.; Cortés, F.B.; Hassan, A. Effect of oxide support on Ni–Pd bimetallic nanocatalysts for steam gasification of n-C 7 asphaltenes. Fuel 2015, 156, 110–120.
24. Cortés, F.B.; Montoya, T.; Acevedo, S.; Nassar, N.N.; Franco, C.A. Adsorption-desorption of n–C7 asphaltenes over micro- and nanoparticles of silica and its impact on wettability alteration. CTF—Ciencia Tecnología Futuro 2016, 6, 89–106.
25. Guzmán, J.D.; Betancur, S.; Carrasco-Marín, F.; Franco, C.A.; Nassar, N.N.; Cortés, F.B. Importance of the adsorption method used for obtaining the nanoparticle dosage for asphaltene-related treatments. Energy Fuels 2015, 30, 2052–2059.
26. Chen, D.T.N.; Wen, Q.; Janmey, P.A.; Crocker, J.C.; Yodh, A.G. Rheology of soft materials. Annu. Rev. Condens. Matter Phys. 2010, 1, 301–322.
27. Visintin, R.F.G.; Lapasin, R.; Vignati, E.; D’Antona, P.; Lockhart, T.P. Rheological behavior and structural interpretation of waxy crude oil gels. Langmuir 2005, 21, 6240–6249.
28. Bazyleva, A.B.; Hasan, A.; Fulem, M.; Becerra, M.; Shaw, J.M. Bitumen and heavy oil rheological properties: Reconciliation with viscosity measurements. J. Chem. Eng. Data 2010, 55, 1389–1397.
29. Behzadfar, E.; Hatzikiriakos, S.G. Viscoelastic properties and constitutive modelling of bitumen. Fuel 2013, 108, 391–399.
30. Dimitriou, C.J.; McKinley, G.H. A comprehensive constitutive law for waxy crude oil: A thixotropic yield stress fluid. Soft Matter 2014, 10, 6619–6644.
31. Ershov, D.; Stuart, M.C.; Van Der Gucht, J. Mechanical properties of reconstituted actin networks at an oil-water interface determined by microrheology. Soft Matter 2012, 8, 5896.
32. Montoya, T.; Coral, D.; Franco, C.A.; Nassar, N.N.; Cortés, F.B. A novel solid-liquid equilibrium model for describing the adsorption of associating asphaltene molecules onto solid surfaces based on the “Chemical Theory”. Energy Fuels 2014, 28, 4963–4975.
33. Talu, O.; Meunier, F. Adsorption of associating molecules in micropores and application to water on carbon. AIChE J. 1996, 42, 809–819.
34. Buckley, S.; Leverett, M. Mechanism of fluid displacement in sands. Trans. AIME 1942, 146, 107–116.
35. Herschel, W.H. The Change in viscosity of oils with the temperature. J. Ind. Eng. Chem. 1922, 14, 715–722.
36. Preece, D.A.; Montgomery, D.C. Design and analysis of experiments. Int. Stat. Rev. 1978, 46, 120.