مطالعه تاثیر استفاده از نمودار¬های تولید در عملکرد چاههای گازی
محورهای موضوعی :محمد کریمیمیر 1 , محمدامین غلامزاده 2 , محمدرضا اصغریگنجه 3
1 - گروه فنی و مهندسی، مرکز تحقیقات نفت و انرژی، واحد امیدیه، دانشگاه آزاد اسلامی، امیدیه، ایران
2 - گروه فنی و مهندسی، مرکز تحقیقات نفت و انرژی، واحد امیدیه، دانشگاه آزاد اسلامی، امیدیه، ایران
3 - گروه شیمی، واحد امیدیه، دانشگاه آزاد اسلامی، امیدیه ، ایران
کلید واژه: پایپسیم, چاه گازی, نمودارهای تولید, فشار ته چاهی, بهینهسازی تولید,
چکیده مقاله :
تولید بهینه از چاهها و مخازن یکی از دغدغههای اصلی مهندسان مخزن و بهرهبرداری در صنعت نفت به شمار میرود. در برخی از مخازن، تغییر در خواص سیالات مخزن و همچنین تغییرات در پارامترهای عملیاتی، ضرورت بهینهسازی تولید را برجسته میسازد. بنابراین، بهرهگیری از روشهای بهینهسازی تولید از مخازن، یکی از موضوعات کلیدی در مهندسی بهرهبرداری محسوب میشود. در این مطالعه، عملکرد چاه گاز میعانی با استفاده از نرمافزار PIPESIM تحلیل شده است. نمودارهای عملکرد چاه، از جمله IPR و TPR، برای بررسی روند تغییرات فشار و دبی تولید به کار گرفته شده اند. بررسی¬ها نشان می دهند که افزایش دبی تولیدی موجب افت فشار ته چاهی شده و می تواند جریان دو فازی را در چاه ایجاد کند. همچنین، تحلیل گرهای نشان می¬دهد که انتخاب مناسب پارامترهای عملیاتی می تواند بهره وری چاه را افزایش دهد.
Optimal production from wells and reservoirs is one of the main concerns of reservoir and production engineers in the petroleum industry. In some reservoirs, changes in reservoir fluid properties as well as changes in operating parameters highlight the need for production optimization. Therefore, the use of reservoir production optimization methods is one of the key issues in production engineering. In this study, the performance of a condensate well is analyzed using PIPESIM software. Well performance graphs, including IPR and TPR, are used to examine the trend of pressure and production flow changes. Studies show that increasing production flow causes a drop in bottomhole pressure and can create two-phase flow in the well. Also, nodal analysis shows that the appropriate selection of operating parameters can increase well productivity.
[1]Al-Attar, H., & Al-Zuhair, S. (2009). A general approach for deliverability calculations of gas wells. Journal of Petroleum Science and Engineering, 67(3), 97–104. https://doi.org/https://doi.org/10.1016/j.petrol.2009.05.003
[2]Al-Shawaf, A., Kelkar, M., & Sharifi, M. (2014). A New Method To Predict the Performance of Gas-Condensate Reservoirs. SPE Reservoir Evaluation & Engineering, 17(02), 177–189. https://doi.org/10.2118/161933-PA
[3]Azin, R., Sedaghati, H., Fatehi, R., Osfouri, S., & Sakhaei, Z. (2019). Production assessment of low production rate of well in a supergiant gas condensate reservoir: application of an integrated strategy. Journal of Petroleum Exploration and Production Technology, 9(1), 543–560. https://doi.org/10.1007/s13202-018-0491-y
[4]Barrut, B., Blancheton, J.-P., Muller-Feuga, A., René, F., Narváez, C., Champagne, J.-Y., & Grasmick, A. (2013). Separation efficiency of a vacuum gas lift for microalgae harvesting. Bioresource Technology, 128, 235–240. https://doi.org/https://doi.org/10.1016/j.biortech.2012.10.056
[5]Changalvaie, A. A., Abdideh, M., & Azizi, S. M. (2015). Optimum Production Potentials for Gas Wells Using Inflow Performance Relationships (IPR) Curves. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 37(7), 775–780. https://doi.org/10.1080/15567036.2011.598909
[6]CHEN, Y., MU, L., ZHANG, J., ZHAI, G., LI, X., LI, J., & ZHAI, H. (2013). Horizontal well inflow performance relationship in foamy heavy oil reservoirs. Petroleum Exploration and Development, 40(3), 389–393. https://doi.org/https://doi.org/10.1016/S1876-3804(13)60048-8
[7]Chen, Z., Qin, C., & Duan, P. (2018). Lifted flame property and interchangeability of natural gas on partially premixed gas burners. Case Studies in Thermal Engineering, 12, 333–339. https://doi.org/https://doi.org/10.1016/j.csite.2018.05.004
[8]Cunha, J. R., Schott, C., van der Weijden, R. D., Leal, L. H., Zeeman, G., & Buisman, C. (2019). Recovery of calcium phosphate granules from black water using a hybrid upflow anaerobic sludge bed and gas-lift reactor. Environmental Research, 178, 108671. https://doi.org/https://doi.org/10.1016/j.envres.2019.108671
[9]Dirza, R., Matias, J., Skogestad, S., & Krishnamoorthy, D. (2022). Experimental validation of distributed feedback-based real-time optimization in a gas-lifted oil well rig. Control Engineering Practice, 126, 105253. https://doi.org/https://doi.org/10.1016/j.conengprac.2022.105253
[10]Dong, M., Yue, X., Shi, X., Ling, S., Zhang, B., & Li, X. (2019). Effect of dynamic pseudo threshold pressure gradient on well production performance in low-permeability and tight oil reservoirs. Journal of Petroleum Science and Engineering, 173, 69–76. https://doi.org/https://doi.org/10.1016/j.petrol.2018.09.096
[11]Dong, Y., Li, P., Tian, W., Xian, Y., & Lu, D. (2019). An equivalent method to assess the production performance of horizontal wells with complicated hydraulic fracture network in shale oil reservoirs. Journal of Natural Gas Science and Engineering, 71, 102975. https://doi.org/https://doi.org/10.1016/j.jngse.2019.102975
[12]Eghbali, S., & Gerami, S. (2013). Modification of Vogel’s Inflow Performance Relationship (IPR) for Dual Porosity Model. Petroleum Science and Technology, 31(16), 1633–1646. https://doi.org/10.1080/10916466.2010.551232
[13]Elyasi, S. (2016). Assessment and evaluation of degree of multilateral well’s performance for determination of their role in oil recovery at a fractured reservoir in Iran. Egyptian Journal of Petroleum, 25(1), 1–14. https://doi.org/https://doi.org/10.1016/j.ejpe.2015.06.006
[14]Faraji, F., Ugwu, J. O., Nabhani, F., & Chong, P. L. (2019). Development of inflow performance model in high temperature gas-condensate reservoirs. Journal of Petroleum Science and Engineering, 181, 106169. https://doi.org/https://doi.org/10.1016/j.petrol.2019.06.033
[15]Fattah, K. A., Elias, M., El-Banbi, H. A., & El-Tayeb, E.-S. A. (2014). New Inflow Performance Relationship for solution-gas drive oil reservoirs. Journal of Petroleum Science and Engineering, 122, 280–289. https://doi.org/https://doi.org/10.1016/j.petrol.2014.07.021
[16]Grubač, B., Šević, S., & Živković, M. (2018). Effect of gas-lift on liquefied petroleum gas (LPG) product yield: A case study of Chinarevskoe gas treatment unit (Kazakhstan). Journal of Petroleum Science and Engineering, 165, 586–595. https://doi.org/https://doi.org/10.1016/j.petrol.2018.02.069
[17]Guerra, L. A. O., Temer, B. O., Loureiro, J. B. R., & Silva Freire, A. P. (2022). Experimental study of gas-lift systems with inclined gas jets. Journal of Petroleum Science and Engineering, 216, 110749. https://doi.org/https://doi.org/10.1016/j.petrol.2022.110749
[18]Guerrero-Sarabia, I., & Fairuzov, Y. V. (2013). Linear and non-linear analysis of flow instability in gas-lift wells. Journal of Petroleum Science and Engineering, 108, 162–171. https://doi.org/https://doi.org/10.1016/j.petrol.2013.01.012
[19]H. Miresmaeili, S. O., Pourafshary, P., & Jalali Farahani, F. (2015). A novel multi-objective estimation of distribution algorithm for solving gas lift allocation problem. Journal of Natural Gas Science and Engineering, 23, 272–280. https://doi.org/https://doi.org/10.1016/j.jngse.2015.02.003
[20]Haddad, M., Cimpoia, R., & Guiot, S. R. (2014). Performance of Carboxydothermus hydrogenoformans in a gas-lift reactor for syngas upgrading into hydrogen. International Journal of Hydrogen Energy, 39(6), 2543–2548. https://doi.org/https://doi.org/10.1016/j.ijhydene.2013.12.022
[21]Han, G., Ma, G., Gao, Y., Zhang, H., & Ling, K. (2021). A new transient model to simulate and optimize liquid unloading with coiled tubing conveyed gas lift. Journal of Petroleum Science and Engineering, 200, 108394. https://doi.org/https://doi.org/10.1016/j.petrol.2021.108394
[22]Hanafizadeh, P., Raffiee, A. H., & Saidi, M. H. (2014). Experimental investigation of characteristic curve for gas-lift pump. Journal of Petroleum Science and Engineering, 116, 19–27. https://doi.org/https://doi.org/10.1016/j.petrol.2014.02.011
[23]Hildenbrand, Z. L., & Schug, K. A. (2021). Reservoir optimized plunger lift technology reduces hydrocarbon emissions from aging gas wells. Science of The Total Environment, 759, 143475. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.143475
[24]Hu, J., Sun, R., & Zhang, Y. (2020). Investigating the horizontal well performance under the combination of micro-fractures and dynamic capillary pressure in tight oil reservoirs. Fuel, 269, 117375. https://doi.org/https://doi.org/10.1016/j.fuel.2020.117375
[25]Hu, S., Deng, Y., Li, Y., & Wang, R. (2019). A new method used for reservoir production performance analysis. Petroleum, 5(1), 30–34. https://doi.org/https://doi.org/10.1016/j.petlm.2018.02.001
[26]Hussein, H., Al-Durra, A., & Boiko, I. (2015). Design of gain scheduling control strategy for artificial gas lift in oil production through modified relay feedback test. Journal of the Franklin Institute, 352(11), 5122–5144. https://doi.org/https://doi.org/10.1016/j.jfranklin.2015.08.007
[27]Jahanbani, A., & Shadizadeh, S. R. (2013). Determination of the Inflow Performance Relationship in Naturally Fractured Oil Reservoirs: Analytical Considerations. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 35(8), 762–777. https://doi.org/10.1080/15567036.2010.516313
[28]Jeong, D., Yoshioka, K., Jeong, H., & Min, B. (2021). Sequential short-term optimization of gas lift using linear programming: A case study of a mature oil field in Russia. Journal of Petroleum Science and Engineering, 205, 108767. https://doi.org/https://doi.org/10.1016/j.petrol.2021.108767
[29]Ji, J., Yao, Y., Huang, S., Ma, X., Zhang, S., & Zhang, F. (2017). Analytical model for production performance analysis of multi-fractured horizontal well in tight oil reservoirs. Journal of Petroleum Science and Engineering, 158, 380–397. https://doi.org/https://doi.org/10.1016/j.petrol.2017.08.037
[30]LI, C., LI, X., GAO, S., LIU, H., YOU, S., FANG, F., & SHEN, W. (2017). Experiment on gas-water two-phase seepage and inflow performance curves of gas wells in carbonate reservoirs: A case study of Longwangmiao Formation and Dengying Formation in Gaoshiti-Moxi block, Sichuan Basin, SW China. Petroleum Exploration and Development, 44(6), 983–992. https://doi.org/https://doi.org/10.1016/S1876-3804(17)30110-6