• Home
  • Ali Shokuhi Rad
  • OpenAccess
    • List of Articles Ali Shokuhi Rad

      • Open Access Article

        1 - Esterification of Waste Cooking Oil Followed by Transesterification by CaO Nanoparticles: Application of Taguchi Methodology
        Ali Shokuhi Rad Poyesh Mehdipour Ali Vaziri Ali Mirabi Ehsan Binaeian
        In order to produce biodiesel from waste cooking oil and optimize its yield, a two-stage process of esterification/ transesterification has been used in this study. First, we used the acidic catalysts H2SO4 in order to diminish the content of free fatty acid (FFA) in oi More
        In order to produce biodiesel from waste cooking oil and optimize its yield, a two-stage process of esterification/ transesterification has been used in this study. First, we used the acidic catalysts H2SO4 in order to diminish the content of free fatty acid (FFA) in oil that caused reducing the oil acidity from 6.1% to 0.57% through esterification. Then, the biodiesel was produced by transesterification of resulted oil using heterogeneous CaO nanoparticles as catalyst. At each stage, the best possible conditions have been determined by applying Taguchi methodology for each major variable, including time, temperature, alcohol/oil molar ratio, and the amount of catalyst. The optimum conditions for esterification are achieved at 80°C temperature, 120 minutes time, 6:1 molar ratio of alcohol/oil, and H2SO4 content of 1% (w/w oil). The optimum condition for transesterification were found in 100 °C temperature, 90 minutes time, 8:1 molar ratio of alcohol/oil, and 3% (w/w oil) of CaO nanoparticles as catalyst. After applying full optimization of these two stages, the yield of the produced biodiesel has achieved 96.4%. Manuscript profile
      • Open Access Article

        2 - Modification of nano Clinoptilolite Zeolite using sulfuric Acid and its application toward removal of Arsenic from water sample
        Ali Shokrolahzadeh Ali Shokuhi Rad Javad Adinehvand
        Zeolites are widely used in waste water and contaminated water refinement due to their great adsorption properties. However, Clinoptilolite (as one type of Zeolites) has a relatively low adsorption capacity at least for arsenic ions. Therefore, in order to increase the More
        Zeolites are widely used in waste water and contaminated water refinement due to their great adsorption properties. However, Clinoptilolite (as one type of Zeolites) has a relatively low adsorption capacity at least for arsenic ions. Therefore, in order to increase the adsorption capacity, natural Clinoptilolite was modified with sulfuric acid and various tests were then conducted to determine the best conditions for obtaining the maximum capacity of adsorption. The results showed that parameters such as arsenic initial concentration, adsorbent's particles size, adsorbent dosage and solution pH affect the adsorption capacity. Arsenic maximum adsorption was obtained at pH 8. Furthermore, the maximum adsorption capacity was found to be in an adsorbent modified with 1 M acid. The contact time or the time of balance between the adsorbent and analyte was determined to be 240 min and the optimal amount of Zeolite to obtain was determined to be 480 g/L. The rate of arsenic removal under the optimal conditions is 27.69%. The modified Clinoptilolite capacity for arsenic adsorption increased with reducing the adsorbent particles size to 0.5 mm. Besides, among the three examined isotherms including the Langmuir, Freundlich and Dubinin-Radushkevich isotherms, the Langmuir and Freundlich models well described arsenic adsorption. Considering the more favorable adsorption efficiency of Clinoptilolite modified with sulfuric acid compared to natural Clinoptilolite, the modified one can be proposed as an appropriate and inexpensive adsorbent for arsenic removal in waste water refinement. Manuscript profile
      • Open Access Article

        3 - Modification of Nano Clinoptilolite Zeolite Using Sulfuric Acid and Its application Toward Removal of Arsenic from Water Sample
        Ali Shokrolahzadeh Ali Shokuhi Rad Javad Adinehvand
        Zeolites are widely used in wastewater and contaminated water refinement due to their great adsorption properties. However, Clinoptilolite (as one type of Zeolites) has a relatively low adsorption capacity at least for arsenic ions. Therefore, in order to increase the a More
        Zeolites are widely used in wastewater and contaminated water refinement due to their great adsorption properties. However, Clinoptilolite (as one type of Zeolites) has a relatively low adsorption capacity at least for arsenic ions. Therefore, in order to increase the adsorption capacity, natural Clinoptilolite was modified with sulfuric acid and various tests were then conducted to determine the best conditions for obtaining the maximum capacity of adsorption. The results showed that parameters such as arsenic initial concentration, adsorbent's particles size, adsorbent dosage and solution pH affect the adsorption capacity. Arsenic maximum adsorption was obtained at pH 8. Furthermore, the maximum adsorption capacity was found to be in an adsorbent modified with 1 M acid. The contact time or the time of balance between the adsorbent and analyte was determined to be 240 min and the optimal amount of Zeolite to obtain was determined to be 480 g/L. The rate of arsenic removal under the optimal conditions is 27.69%. The modified Clinoptilolite capacity for arsenic adsorption increased with reducing the adsorbent particles size to 0.5 mm. Besides, among the three examined isotherms including the Langmuir, Freundlich and Dubinin-Radushkevich isotherms, the Langmuir and Freundlich models well described arsenic adsorption. Considering the more favorable adsorption efficiency of Clinoptilolite modified with sulfuric acid compared to natural Clinoptilolite, the modified one can be proposed as an appropriate and inexpensive adsorbent for arsenic removal in waste water refinement. Manuscript profile