The photo degradation of methyl red in aqueous solutions by α-Fe2O3/SiO2 nano photocatalyst
Subject Areas : Journal of NanoanalysisMajid Saghi 1 * , Aref Shokri 2 , Ali Arastehnodeh 3 , Mohammad Khazaeinejad 4 , Atena Nozari 5
1 - Young Researchers and Elite Club, Arak Branch, Islamic Azad University, Arak, Iran
2 - Young Researchers and Elite Club, Arak Branch, Islamic Azad University, Arak, Iran
3 - Department of Chemical Engineering, Quchan Branch, Islamic Azad University, Quchan, Iran
4 - Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran
5 - Young Researchers and Elite Club, Quchan Branch, Islamic Azad University, Quchan, Iran
Keywords: Methyl red, Solid-State Dispersion (SSD) method, nanophotocatalyst, &alpha, -Fe2O3/SiO2,
Abstract :
The Photocatalytic degradation of chemical pollutants such as dyes, especially by Nano catalysts is an effective method to protect the environment and water resources. In this study, through Forced Hydrolysis and Reflux Condensation (FHRC) method the nanospherical α-Fe2O3 particles were synthesized and supported on the surface of silica sand by Solid-State Dispersion (SSD) method with the average crystallite size of 27.5 nm. The characterization of catalyst and catalyst support was done using FTIR spectroscopy, SEM images, XRD patterns and BET surface area.In this paper, α-Fe2O3/SiO2 nano photocatalyst was used for the removal of methyl red (MR) under ultraviolet (UV) light. After running different tests, the effective parameters such as the concentration of MR, pH, and mass of catalyst on pollutant degradation were optimized by single-variable method. The results showed that the optimum conditions for achieving 98.46 % of degradation were pH at 5, initial concentration of MR at 10 mg/l, and 2.0 g of α-Fe2O3/SiO2 nano photo catalyst.
1. A. Shokri, K. Mahanpoor and D. Soodbar, Desalin. Water Treat., 57, 16473 (2016). https://doi.org/10.1080/19443994.2015.1085454
2. C. Fernandez, M.S. Larrechi and M.P. Callao, TrAC, Trends Anal. Chem., 29, 1202 (2010). http://www.sciencedirect.com/science/article/pii/S0165993610002190
3. N.K. Singh, S. Saha and A. Pal, Desalin. Water Treat., 56, 1066 (2015). https://doi.org/10.1080/19443994.2014.942380
4. P.P. Vijaya and S. Sandhya, Environmentalist, 23, 145 (2003). https://doi.org/10.1023/A:1024839805387
5. Y. Badr, M.G. Abd El-Wahed and M.A. Mahmoud, J. Hazard. Mater., 154, 245 (2008). https://doi.org/10.1016/j.jhazmat.2007.10.020
6. A. Bhattacharya, N. Goyal and A. Gupta, Extremophiles, 21, 479 (2017). https://dx.doi.org/10.1007/s00792-017-0918-2
7. E.A. Khan, Shahjahan and T.A. Khan, J. Mol. Liq., 249, 1195 (2018). https://doi.org/10.1016/j.molliq.2017.11.125
8. A. Galenda, L. Crociani, N. El Habra, M. Favaro, M.M. Natile and G. Rossetto, Appl. Surf. Sci., 314, 919 (2014). https://doi.org/10.1016/j.apsusc.2014.06.175
9. A. Shokri, Desalin. Water Treat., 58, 258 (2017). https://doi: 10.5004/dwt.2017.0292
10. A. Shokri, K. Mahanpoor and D. Soodbar, J. Environ. Chem. Eng., 4, 585 (2016). https://doi.org/10.1016/j.jece.2015.11.007
11. Aref Shokri, Int. J. Nano Dimens., 7 (2), 160(2016). https:// 10.7508/ijnd.2016.02.008
12. C. Sahoo, A.K. Gupta and A. Pal, Desalination, 181, 91 (2005). https://doi.org/10.1016/j.desal.2005.02.014
13. M. Mohaddasi, A. Shokri, Desal. Water Treat., 81,199 (2017). https://doi.org/10.5004/dwt.2017.21182
14. M. Saghi and K. Mahanpoor, Int. J. Ind. Chem., 8, 297 (2017). https://doi.org/10.1007/s40090-016-0108-6
15. A. Shokri, F. Rabiee and K. Mahanpoor, Int. J. Environ. Sci. Technol., 14, 2485 (2017). https://doi.org/10.1007/s13762-017-1346-7
16. M. Farahmandjou and F. Soflaee, Phys. Chem. Res., 3, 191 (2015). 10.22036/pcr.2015.9193
17. H. Liang, K. Liu and Y. Ni, Mater. Lett., 159, 218 (2015). https://doi.org/10.1016/j.matlet.2015.06.103
18. M. Diab and T. Mokari, Inorg. Chem., 53, 2304 (2014). 10.1021/ic403027r
19. T. Jiang, A.S. Poyraz, A. Iyer, Y. Zhang, Z. Luo, W. Zhong, R. Miao, A.M. El-Sawy, C.J. Guild, Y. Sun, D.A. Kriz and S.L. Suib, J. Phys. Chem. C., 119, 10454 (2015). 10.1021/acs.jpcc.5b02057
20. A. Askarinejad, M. Bagherzadeh and A. Morsali, J. Exp. Nanosci., 6, 217 (2011). https://doi.org/10.1080/17458080.2010.489583
21. M. Tadic, M. Panjan, V. Damnjanovic and I. Milosevic, Appl. Surf. Sci., 320, 183 (2014). https://doi.org/10.1016/j.apsusc.2014.08.193
22. S. Bharathi, D. Nataraj, D. Mangalaraj, Y. Masuda, K. Senthil and K. Yong, J. Phys. D: Appl. Phys., 43, 1 (2010). 10.1088/0022-3727/43/1/015501
23. M. Chen, J. Liu, D. Chao, J. Wang, J. Yin, J. Lin, H.J. Fan and Z.X. Shen, Nano Energy, 9, 364 (2014). https://doi.org/10.1016/j.nanoen.2014.08.011
24. K. Zhao, Y. Lu, N. Lu, Y. Zhao, X. Yuan, H. Zhang, L. Teng and F. Li, Appl. Surf. Sci., 285, 616 (2013). https://doi.org/10.1016/j.apsusc.2013.08.101
25. M. Nikazar, K. Gholivand and K. Mahanpoor, Desalination, 219, 293 (2008). https://doi.org/10.1016/j.desal.2007.02.035
26. A. Shokri, K. Mahanpoor, Int J Ind Chem 8,101, (2017). https:// 10.1007/s40090-016-0110-z
27. A. Shokri, A. Hassani Joshagani, , Rus. J. appl. Chem., 89, 1985(2016). https:// 10.1134/S1070427216120090