Recent Advancement in monolithic refractories via application of Nanotechnology “A review Paper”
Subject Areas : Journal of NanoanalysisHassan Gheisari 1 * , Salman Ghasemi-kahrizsangi 2 * , Ebrahim Karamian 3 , Ali Nemati 4
1 - Advanced Materials Research Center, Faculty of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
2 - Advanced Materials Research Center, Faculty of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
3 - Advanced Materials Research Center, Faculty of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
4 - Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
Keywords: nanotechnology, Nano Materials, Nano-Particles, Refractory, Monolithic,
Abstract :
In recent years, the use of nanotechnology (nano-particles, nanomaterial, nano-additives and nanostructuredmaterials) has attracted attention of scholars, engineers and scientists in all scientificfields such as chemistry, medicine, material, agriculture, electronic etc. The use of nanotechnologyhas also become widespread in the refractory products (which mainly used in various industries suchas steel, casting, cement, glass etc.). Therefore, the effect of using different types and contents ofnanomaterials (oxides and non-oxides) as well as the control of microstructure has been evaluatedby many researchers on the properties of shapes (bricks) and un-shaped (monolithic) refractoryproducts. The obtained results were very promising and satisfactory. One of the most consumablerefractory products in various industries is monolithic refractories, which has been widely usedbecause of their great benefits to the other refractory products (bricks). In this paper, recent advancesin monolithic refractories by using the finding of nanotechnology are presented. This article can beconsidered as guidance for researchers, students gain easy access to experimental results obtainedby different research group using nanotechnology and nano materials in monolithic refractories.
[1] Klaus D. Sattler, “Principles and Methods: Handbook of Nanophysics”, 2010, CRC, New York.
[2] B. Bhushan, “Handbook of Nanotechnology”, 2004, Berlin.
[3] C. Huang, A. Notten, N. Rasters, J. Technol. Transf. 36, 145–172 (2011).
[4] F. Simonis S. Schilthuizen, Nanotechnology Innovation Opportunities For Tomorrow’s Defence, (2006).
[5] W.H. de Jong, B. Roszek, R.E. Geertsma, Nanotechnology in medical applications: possible risks for human health. RIVM report 265001002, RIVM, National Institute for Public Health and the Environment, Bilthoven, (2005).
[6] Nanotechnology, Biotechnology, and Information Technology : A Workshop of the EPA Science Advisory Board,(2005)
[7] B. Bhushan, “Handbook of Nanotechnology” (2004),Berlin.
[8]A.G. Davies, J.M.T. Thompson, Advances in Nano engineering Electronics, Materials and Assembly. Royal Society Series on Advances in Science 3, Imperial College Press, London, 3 (2007).
[9] K. Autumn, Y.A. Liang, S.T. Hsieh, W. Zesch, W.P. Chan, T.W. Kenny, R. Fearing, R.J. Full, Nature Nanotechnology: Principles and application, 405, 681–685 (2000).
[10]. I. Freestone, N. Meeks, M. Sax, C. Higgitt, Gold Bull. 40, 270 (2007)
[11] H. Shikano, “Refractories Handbook”, the Technical A ssociation of Refractories, Japan, (1998).
[12] J. H. Chesters, “Refractories Production and Properties”, the Iron and Steel Institute, London, (1973)
[13] Refractories, the Refractories Institute, Pittsburgh, PA, USA (1987).
[14] G. Routschka, Pocket Manual Refractory Materials, Vulkan; 2nd edition, (2007)
[15] S.B, Hassan; J.O.T, Adewara, Refractory properties of some Nigerian Clays. Niger Soc Eng, Trans. 28, 21 – 5(1993).
[16] E.E Nnuka, U.J.E Agbo, Evaluation of the Refractory Characteristics of Otukpo clay deposits, N.S.E. Tech Trans, 35,34-36(2000).
[17]Chromium Screening Study Test Report, Harbison-Walker Refractories, Baltimore, Maryland, EMB Report 85-CHM-12, U. S. Environmental Protection Agency, Research Triangle Park, NC,(1985).
[18] P. Williams, P. Dawson , T.W. Lythe, further development in the introduction of basic refractories in too teeming and secondary steel making ladles, proceeding of 2nd international conference on refractories, Vol.1, Japan, (1987).
[19] B. Myhre , Let’s make a castable, Refr Appli & news , 3, 3-4(2008).
[20] W. E. Lee, W. Vieira, S. Zhang, K. G. Ahari, H. Sarpoolaky and C. Parr, Castable Refractory Concrete, Intern. Mat. Rev. 46145-167 (2001).
[21] E.O, Obadinma, Development of Refractory Bricks for Heat Treatment Facilities. j Sci Tech Resear. 213-17(2003).
[22] A. P. Green Company , Calciners And Dryers Emission Test Report, , Mexico, Missouri, EMB Report 83-CDR-1, U. S. Environmental Protection Agency, Research Triangle Park, NC,October (1983).
[23] Emission Test Report: Plant A, Document No. C-7-12, Confidential Business Information Files, ESD Project No. 81/08, U. S. Environmental Protection Agency, Research Triangle Park, NC, June 13, (1983).
[24]Source Category Survey: Refractory Industry, EPA-450/3-80-006, U. S. Environmental Protection Agency, Research Triangle Park, NC, March (1980).
[25] Calciners and Dryers, Emission Test Report: North American Refractories Company, Farber, Missouri, (1984).
[26] Missouri, EMB Report 84-CDR-14, U. S. Environmental Protection Agency, Research Triangle Park, NC, March (1984).
[27] R. R. Das, effect of micron and nano MgAl2O4 spinel addition on the properties of magnesia-carbon refractories, Thesis for the degree of Master of Technology. (2010).
[28] R. Exenberger., H Moser, k Niederhammer, Heiss., J. Hoefer W , Improvement of the refractory lining in the Id-converter at Voestalpine StalhGmbh LINZ ,Australia, Proc.UNITCER’07,Dresden ,Germany, 73-76., (2007),
[29] R. Schmidt-Whitley., The European refractory industry faces new challenges, 50th Congress of the Spanish Ceramic and Glass Society. (2010)
[30] C. Richmond,” Refractories Handbook” , ed. by C.A. Schacht(2004).183–200.
[31] J.D Smith., Fahrenholtz W.G., Refractory Oxides in Ceramic and Glass Materials: Structure, Properties and Processing. Ed. by J.F. Shackelford, R.H. Doremus, 87–110(2008).
[32] S. M Huang, Y Yang, Q.H Xue. Research progress of recycling of used refractories. Refr.41:460-466(2007).
[33] S. Banerjee, Recent developments in monolithic refractories, Amer. Ceram. Soc. Bull. 77 59–63 (1998).
[34] K. M. Parker, J. H Sharp, Refractory Calcium Aluminate Cements, Review paper, Trans. J. Brit. Ceram. Soc., 81, 35 (1982).
[35] LI, Zaigeng, Zh. Ningsheng, technology advancement in preparation and application of monolithic refractory, Chin Refr, 10, 13-10, (2001).
[36] Zh. Ningsheng, Hu Shuhe , Zh Sanhua, Advances in monolithic refractory castable, Chin Refr , 13 , 3-12, (2004),.
[37] Plibrico, Technology of monolithic refractory.
[38] Liu, Monolithic Roofs For UHP Furnace, Unitcer, pp. 322-330
[39] E Yu, Pivinskii, Unshaped Refractories. Gener Tech [in Russian], Teploénergetik, Moscow 1 (2003).
[40] V. V. Martynenko, I. V. Khonchik, and E. A. Svetlichnyi, The 47th International Congress on Refractories in Aachen, Novye Ogneupory, 2, 61–68 (2005).
[41] N. Tsukamoto, Present situation and future forecast of Japanese refractories industry, in: World Refractory Congress-2004, Session 4, Suntec, Singapore, 1 – 13(2004).
[42] I. G. Ochagova, Present situation and future forecasts for the refractory industry in Japan, Nov Ogneu ,5, 97 – 100 (2005).
[43] E. Yu. Pivinskii, Ceramic castables: final stage in the development of low-cement refractory castables. Part 1. Ogneup. Tekh. Keram,1, 11 – 15 (2000).
[44] D.V Kuznetsov., D.V Lysov., A.A Nemtinov., A.S Shaleiko., V.A Korolkov., Nanomaterials in refractory technology. , Refr. Indu. Ceram , 61–63(2010),. [45] L Khoroshavin., V .A Perepelitsyn, on the nanotechnology of refractories, Refr. Indu. Ceram, 40, 553–557(1999).
[46] D. V. Kuznetsov, D. V, Lysov., A, Nemtinov., A. S, Shaleiko., V. A, Korolkov, Refractories in heat units Nano-materials in refractory technology. Refr. Indus. Ceram. 51:23-45(2010).
[47] P Palmero. Structural Ceramic Nanocomposites: A review of properties and powders, Synth Meth Nanomate, 5,656-96 (2015).
[48] D. Jiang, H. Li, Z. Wang,Research status and developing trend of nano-technology in refractories, Naihuo Cailiao, 40,297-9(2006).
[49] E . Pivinskii, Dyakin, Yu P.V Y., Vikhman.S.V, Nanoparticles and their effective use in the technology of highly concentrated binding suspensions (hcbs) and refractory castables. Refr. Indu. Ceram,44, 314–318(2003).
[50] W. H. Zhi, Zh. H. Zhong, G. H. Zhi, W. Zh. Fu, D. Y. Yue , Application of nanotechnology in refractories, J Wuhan Yejin Uni Sci Tech, 02(2005).
[51] V. Antonovic, I. Pundiene, R. Stonys, J. Cesniene, J. Keriene, A review of the possible applications of nanotechnology in refractory concrete, J. Civil Eng. Manag. 16 (4), 595–602(2010).
[52] H. Li , H. Li , X. Cao , Research status and developing trend of Nano-technology in refractories, (2006).
[53] E. Y, Pivinskii, P.V. Dyakin, Y. Yu, Pivinskii, S.V. Vikhman, Nanoparticles and their effective use in the technology of highly concentrated binding suspensions (hcbs) and refractory castables, Refr Indus Ceram, 44, 314–318(2003).
[54] S. Tamura, T. Ochiai, S. Takanaga, T. Kanai, H. Nakamura, Nano-tech refractories 1: the development of the nanostructural matrix, in: Proceedings of UNITECR’03 Congress, 19–22 October, Osaka, Japan, 517–520 (2003).
[55] D. V. Kuznetsov, D. V. Lysov, A. A. Nemtinov, A. S. Shaleiko, V. A. Korolkov, Refractories in heat units Nano-materials in refractory technology, Refr Indus Ceram , 51(2010).
[56] S. Ghasemi-Kahrizsangi, E. Karamian, H. Gheisari Dehsheikh, A. Ghasemi-Kahrizsangi, A review on recent advances on magnesia-doloma refractories by nano-technology, J Wat Envi Nanotech , 2, 206-222(2017).
[57] S. Gh. Kahrizsangi, A.Nemati, A. Shahraki and M. Farooghi The effect of nano-additives on the hydration resistance of materials synthesized from the MgO-CaO system, Int J Eng , 29,539-545(2016).
[58] S. Ghasemi-Kahrizsangi, H. Gheisari Dehsheikh, E. Karamian, A. Nemati , A comparative evaluation of the addition impact of nanometer-sized tetravalent oxides on the performance of Doloma-Magnesia ceramic refractories, Ceram Int, 44, 2, 2058-2064(2018).
[59] M. Boroujerdnia S. Ghasemi-kahrizsangi, H. Gheisari-dehsheikh, the effect of nano meter size ZrO2 particles addition on the densification and hydration resistance of magnesite– dolomite refractories, Iranian Journal of Materials Science and Engineering, 13, 4, 33-40(2016).
[60] S. Ghasemi-Kahrizsangi, H. Gheisari Dehsheikh, M. Boroujerdnia, MgO–CaO–Cr2O3 composition as a novel refractory brick: Use of Cr2O3 nanoparticles, 56, 2, 83-89(2017).
[61] S. Ghasemi-Kahrizsangi, E. Karamian, H. Gheisari Dehsheikh, The impact of ZrSiO4 nanoparticles addition on the microstructure and properties of dolomite based refractories, Ceramm Int, 43, 16 , 13932-13937(2017),
[62] S. Ghasemi-Kahrizsangi, H. Gheisari Dehsheikh, E. Karamian, M. Boroujerdnia, Kh. Payandeh Effect of MgAl2O4 nanoparticles addition on the densification and properties of MgO-CaO refractories, Ceramics International, 43, 6, 5014-5019 (2017).
[63] A. Shahraki, S. Ghasemi-Kahrizsangi, A. Nemati, Performance improvement of MgO-CaO refractories by the addition of Nano-sized Al2O3, Mater Chem Phys, 198, 354-359(2017).
[64] S. Ghasemi-Kahrizsangi, A. Shahraki, M. Farooghi, Effect of Nano-TiO2 Additions on the Densification and Properties of Magnesite–Dolomite Ceramic Composites, Iran J Sci Tech , Trans A, 42,567-575 (2018).
[65] H. Gheisari Dehsheikh, S. Ghasemi-Kahrizsangi, The influence of silica nanoparticles addition on the physical, mechanical, thermo-mechanical as well as microstructure of Mag-Dol refractory composites, Ceram Int , 43, 18, 16780-16786(2017).
[66] H. Gheisari Dehsheikh, S. Ghasemi-Kahrizsangi, E. Karamian , Addition impact of nano-carbon black on the performance of MgO.CaO compounds, Ceramics International, 44, 1 ,5524-5527( 2018).
[67] S. G Kahrizsangi, A. Nemati, A. Shahraki, M. Farooghi, Effect of nano-sized Fe2O3 on microstructure and hydration resistance of MgO-CaO refractories, Int J Nanosc Nanotech, 12, 1, 19-26(2016).
[68] S. Ghasemi-Kahrizsangi, A. Nemati, A. Shahraki, M. Farooghi, Densification and properties of Fe2O3 nanoparticles added CaO refractories, Ceram Int , 42, 12270-12275(2016).
[69] S. Ghasemi-Kahrizsangi, M .Barati, H. Gheisari, A. Shahraki, and M. Farooghi, ,Densification and properties of ZrO2 nanoparticles added magnesia–doloma refractories, Ceram Int, 42, 14, 15658-15663(2016)
[70] S. Ghasemi-Kahrizsangi, E. Karamian, A Ghasemi-Kahrizsangi, H. Gheisari Desheikh, A. Soheily, The impact of trivalent oxide nanoparticles on the microstructure and performance of magnesite-dolomite refractory bricks, Mater Chem Phys, 193, 413-420(2017).
[71] S. Ghasemi-Kahrizsangi, H. Gheisari Dehsheikh, M. Boroujerdnia, Effect of micro and nano-Al2O3 addition on the microstructure and properties of MgO-C refractory ceramic composite, Mater Chem Phy, 189, 230-2365(2017).
[72] S. Ghasemi-Kahrizsangi, H. Gheisari Dehsheikh, E. Karamian, Impact of Titania nanoparticles addition on the microstructure and properties of MgO-C refractories, Ceram Int , 43, 15472-15477 (2017).
[73] H. Gheisari Dehsheikh, S. Ghasemi-Kahrizsang, Performance improvement of MgO-C refractory bricks by the addition of Nano-ZrSiO4, Mater Chem Phy, 202, 369-376(2017).
[74] H. Gheisari Dehsheikh, E. Karamian, R. Gh. Owsalou, S. Ghasemi-Kahrisangi, N. Vefgh, A. Soheily, Improvement in performance of MgO–CaO refractory composites by addition of Iron (III) oxide nanoparticles, Ceram Int, 44,15880-15886 ,(2018).
[75] S. Ghosh, R. Lodha, P. Barick , S. Mukhopadhyay, Improvement of thermal characteristics of refractory castable by addition of gel-route spinel nanoparticles, J Mater Manufac Proc, 22,81-90(2007).
[76] W. Zhanmin, Jiang. Dongmei , C. Xiying, Effect of Nano-Al2O3 addition on the properties of Al2O3-SiC-C castables, Rare Metal Mater Eng, 37,560-564(2008).
[77] W. Zhanmin, Jiang. Dongmei , C. Xiying, Effect of Nano SiC Addition on Properties of Al2O3-SiC-C Castables, Rare Metal Mater Eng , 38,1263-1268(2009).
[78] M. H. Amin, M. A. Ebrahimabadi, M. R. Rahimipour, The E ffect of Nanosized Carbon Black on the Physical and Thermomechanical Properties of Al2O3–SiC–SiO2–C Composite, J Nanomater,1, (2009).
[79] L. Zhigang, Y. Fangbao, Zh. Yu, Effect of nano calcium carbonate on the properties of corundum-based castables, Indust Ceram , 29,31-37( 2009).
[80] S. Otroj, R. Marzban, Z. A. Nemati, N. Sajadi, Mohammad. Reza Nilforoushan, Behavior of alumina-spinel self-flowing castables with nano-alumina particles addition, Ceram Silik 53,98-101(2009).
[81] S. H. Badiee, O. Sasan, Non-cement refractory castables containing nano-silica: Performance, microstructure, properties, Ceram Silik, 53,297-302(2009).
[82] S. Otroj , A. Sagaeian , A. Daghighi , Z. A. Nemati , the effect of nano-size additives on the electrical conductivity of matrix suspension and properties of self-flowing low-cement high alumina refractory castables, Ceram Int, 36 , 1411–1416(2010).
[83]S. Otroj, , A. Daghighi,Microstructure and phase evolution of alumina–spinel self-flowing refractory castables containing nano-alumina particles, Ceram Int, 37, 1003–1009(2011).
[84] S. Hossein Badiee, S. Otroj, Effect of nano-titania addition on the properties of high-alumina low-cement self-flowing refractory castables, Ceram. Silik , 55, 319-325(2014).
[85] H. Yaghoubi, H. Sarpoolaky, F. Golestanifard1, A. Souri, influence of nano silica on properties and microstructure of high alumina ultra-low cement refractory castables, Iran J Mater. Sci. Eng, 9 (2012).
[86] L. I Zhigang, Y. E. Fangbao, Effect of nano calcium carbonate on properties of corundum-spinel castables, Chin. Refr, 22(2012).
[87] N. M. Khalil, M.S. Wahsh, E. M. Ewais, M. B. Hassan,S.M. Mehrez , Improvement of mullite and magnesia-based refractory castables through addition of nano-spinel powder, Int J App. Ceram. Tech , 10, 655–670(2013)..
[88] S. Mukhopadhyay, G. Das, I. Biswas, Nanostructured cementitious sol gel coating on graphite for application in monolithic refractory composites, Ceram Int ,38, 1717–1724(2012).
[89] E.Y. Sako, M.A.L. Braulio, V.C. Pandolfelli, How effective is the addition of nano scaled particles to alumina–magnesia refractory, Ceram Int, 38, 5157–5164(2012).
[90]C. Gogtas, Development of Nano-ZrO2 Reinforced Self-Flowing Low and Ultra Low Cement Refractory Castables, PHD thesis, University of Wisconsin-Milwaukee,(2012).
[91] S. Mukhopadhyay, Nanoscale calcium aluminate coated graphite for improved performance of alumina based monolithic refractory composite, Mater Resea Bull ,48 ,2583–2588( 2013).
[92] N. Farzadnia, A. A. A. Ali, R, Demirboga, Characterization of high strength mortars with nano alumina at elevated temperatures, Cem Con Resear, 43–54(2013).
[93] S. Dutta, P. Das, A. Das, S. Mukhopadhyay, Significant improvement of refractoriness of Al2O3–C castables containing calcium aluminate nano-coatings on graphite, Ceram Int, 40 4407–4414( 2014).
[94] S. Otroj, impact of Nano-Cr2O3 addition on the properties of aluminous cements containing spinel, Materl Sci, 21(2015).
[95] C. Gogtasa, H. F. Lopeza, K. Sobolev, Effect of nano-YSZ and nano-ZrO2 additions on the strength and toughness behavior of self-flowing alumina castables, Ceram Int, l42, 1847–1855(2016).
[96] S. Ghasemi-Kahrizsangi, H. Gheisari Dehsheikh, E. Karamian, A. Ghasemi-Kahrizsangi, S.V. Hosseini .The influence of Al2O3 nanoparticles addition on the microstructure and properties of bauxite self–flowing low-cement castables. Ceram Inter, 43 , 8813-8818(2017).
[97]. H. Rastegar, Ph.D. thesis, supervisors: A. Nemati and M. Bavand, Science and Research branch, IAU, Tehran, Iran (2018).
[98] V. Denis. Kuznetsov, D. Lysov, A. A. Nemtinov, V. A. Korol’kov, Nanomaterials in refractory technology, Refr Indus Ceram, 51, 61-63 (2010).
[99] M. Nouri-Khezrabad, M.A.L.Braulio, V.C.Pandolfelli, F.Golestani-Fard, and H.R.Rezaie , Nano-bonded refractory castables, Ceram Int, 39, 3479-3497 ( 2013).
[100] M. Nouri-Khezrabad, A.P.Luz, V.R.Salvini, F.Golestani-Fard, H.R.Rezaie and V.C.Pandolfelli , Developing of nano-bonded refractory castables with enhanced green mechanical properties, Ceram Int , 41, 3051-3057( 2015).
[101] M. Nouri-Khezrabad, V.R.Salvini, A.P.Luz, F.Golestani-Fard, H.R.Rezaie and V.C.Pandolfelli, Rheological performance of high alumina nano-bonded refractory castables containing carboxylic acids as additives , Ceram Int , 41, 11251-11256( 2015).
[102] T.M. Souza A.P.Luz V.C. Pandolfelli, Magnesium fluoride role on alumina–magnesia cement-bonded castables, Ceram Int, 40, 9, 14947-14956(2014).
[103] A.P. Luz, L.B.Consoni, C.Pagliosa, C.G.Aneziris, and V.C.Pandolfelli , Sintering effect of calcium carbonate in high-alumina refractory castables, Ceram Int , 44, 9, 10486-10497(2018).
[104] S. Tamura, T. Ochiai, T. Matsui, K. Goto,Technological Philosophy and Perspective of Nanotech Refractories, Nippon steel technical report, No 98, UDC 666.764.1(2008).
[105] P.R. Rauta and N. Sahoo , Properties enhancement of refractory bricks by incorporation of nano materials , International Conference on Nascent Technologies in the Engineering Field ,Navi Mumbai, India(2015)..
[106] V. Antonovič, I. Pundienė, R. Stonys, J. Čėsnienė, J. Kerienė, a review of the possible applications of nanotechnology in refractory concrete, J Civi Eng Manag, 16, 595–602 (2010).
[107] Better Refractories through Nanotechnology, Ceram Indus, 1, (2005)
[108] M. Nouri-Khezrabad, A. P. Luz, F. Golestani-Fard, H. R. Rezaie, and V. C. Pandolfell ,Citric acid role and its migration effects in nano-bonded refractory castables, Ceram Int, 40, 14523-14527(2014).