Adsorption study of Ni (II) ion and azo dye DR278 in aqueous media using MoS2/O-MWCNTs adsorbent and optimization by response surface methodology
Subject Areas : Journal of NanoanalysisElham Ahangaran 1 , Hossein Aghaie 2 * , Reza Fazaeli 3
1 - Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 - Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
3 - Department of Chemistry, Faculty of Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
Keywords: MoS2, O-MWCNTs, Adsorption, DR278, Ni (II),
Abstract :
In this research, molybdenum disulfide (MoS2) particles were synthesized by hydrothermal method and loaded on oxidized multiwalled carbon nanotubes (O-MWCNTs). MoS2 and MoS2/O-MWCNTs particles were characterized by several techniques. Adsorption of Direct Red 278 (DR278), and Ni (II) ion were investigated onto MoS2 and MoS2/O-MWCNTs particles. The effect of adsorbent mass (g), contact time (min), pH was evaluated by response surface methodology (RSM). The software determined the best point to achieve the highest removal efficiency for azo dye DR278, in the optimal conditions of adsorbent mass 0.03 (g), contact time 27.54 (min) and pH 5.01, 99.99%. Also, the removal efficiency for Ni (II) ion, under optimal conditions of adsorbent mass 0.04 (g), time 26.61 (min) and pH 7.09, 97.83%. Isothermal studies showed that the Dubinin–Radushkevich model had the highest correlation coefficients of 0.98 and 0.97 for Ni (II) ion and azo dye DR278 with the respectively lowest error rate, and the highest correlation to the experimental data. The adsorption kinetic results showed ion Ni (II) ion and Azo dye DR278 adsorptions are well described by the mentioned adsorbent with pseudo-second order kinetic model.
[1]. Hasanpour, M., & Hatami, M. Application of three dimensional porous aerogels as adsorbent for removal of heavy metal ions from water/wastewater: A review study. Adv. Colloid Interface Sci, 2020, p.102247.
[2]. Esrafili, L., Firuzabadi, F. D., Morsali, A., & Hu, M. L. Reuse of predesigned dual-functional metal organic frameworks (DF-MOFs) after heavy metal removal. J. Hazard. Mater, 2021, vol. 403, p.123696.
[3]. Wadhawan, S., Jain, A., Nayyar, J., & Mehta, S. K Role of nanomaterials as adsorbents in heavy metal ion removal from waste water: A review. J. Water Process. Eng, 2020, vol. 33, p.101038.
[4]. Ren, R. Y., Yang, L. H., Han, J. L., Cheng, H. Y., Ajibade, F. O., Guadie, A., ... & Wang, A. J. Perylene pigment wastewater treatment by fenton-enhanced biological process. Environ. Res, 2020, p.109522.
[5]. Aramesh, N., Bagheri, A. R., & Bilal, M. Chitosan-composite/hybrid biomaterials for adsorptive removal of dyes and underlying interaction mechanisms. Int. J. Biol. Macromol, 2021, vol 183, pp.399-422.
[6]. Zhuang, H., Shi, J., Shan, S., Ping, L., & Zhang, C. Enhanced anaerobic treatment of azo dye wastewater via direct interspecies electron transfer with Fe3O4/sludge carbon. Int. J. Hydrog. Energy, 2020, vol. 45, no. 53, p. 28476-28487.
[7]. Shokouhi, S. B., Dehghanzadeh, R., Aslani, H., & Shahmahdi, N. Activated carbon catalyzed ozonation (ACCO) of Reactive Blue 194 azo dye in aqueous saline solution: Experimental parameters, kinetic and analysis of activated carbon properties. J. Water Process. Eng, 2020, vol. 35, p. 101188.
[8]. Kwon, G., Cho, D. W., Wang, H., Bhatnagar, A., & Song, H. Valorization of Plastics and Paper Mill Sludge into Carbon Composite and its Catalytic Performance for Azo Dye Oxidation. J. Hazard. Mater, 2020, p.123173.
[9]. Fard, N. E., & Fazaeli, R. A novel kinetic approach for photocatalytic degradation of azo dye with CdS and Ag/CdS nanoparticles fixed on a cement bed in a continuous‐flow photoreactor. Int. J. Chem. Kinet, 2016, vol. 48, no. 11, pp. 691-701.
[10]. Fard, N. E., Fazaeli, R., & Ghiasi, R. Band gap energies and photocatalytic properties of CdS and Ag/CdS nanoparticles for Azo dye degradation. Chem. Eng. Technol, 2016, vol. 39, no. 1, pp. 149-157.
[11]. Biju, L. M., Pooshana, V., Kumar, P. S., Gayathri, K. V., Ansar, S., & Govindaraju, S. Treatment of textile wastewater containing mixed toxic azo dye and chromium (VI) BY haloalkaliphilic bacterial consortium. Chemosphere, 2022, vol. 287, p.132280.
[12]. Nekooie, R., Shamspur, T., & Mostafavi, A. Novel CuO/TiO2/PANI nanocomposite: Preparation and photocatalytic investigation for chlorpyrifos degradation in water under visible light irradiation. J. Photochem. Photobiol, 2021, vol. 407, p.113038.
[13]. Alardhi, S. M., Albayati, T. M., & Alrubaye, J. M. Adsorption of the methyl green dye pollutant from aqueous solution using mesoporous materials MCM-41 in a fixed-bed column. Heliyon, 2020, vol. 6, no. 1, p. e03253.
[14]. Staciwa, P., Sibera, D., Pełech, I., Narkiewicz, U., Łojkowski, W., Dąbrowska, S., & Cormia, R. Effect of microwave assisted solvothermal process parameters on carbon dioxide adsorption properties of microporous carbon materials. Microporous and Mesoporous Mater, 2020, vol. 314, p. 110829.
[15]. Santana-Viera, S., Padrón, M. E. T., Sosa-Ferrera, Z., & Santana-Rodríguez, J. J. Quantification of cytostatic platinum compounds in wastewater by inductively coupled plasma mass spectrometry after ion exchange extraction. Microchem. J, 2020, vol. 157, p. 104862.
[16]. Kalla, S. Use of membrane distillation for oily wastewater treatment–a review. J. Environ. Chem. Eng, 2021, vol. 9, p.104641.
[17]. Alvial-Hein, G., Mahandra, H., & Ghahreman, A. Separation and recovery of cobalt and nickel from end of life products via solvent extraction technique: A review. 2021, J. Clean. Prod, vol.297, p. 126592.
[18]. Martínez-Huitle, C. A., & Panizza, M. Electrochemical oxidation of organic pollutants for wastewater treatment. Curr. Opin. Electrochem, 2018, vol. 11, pp. 62-71.
[19]. Peng, H., & Guo, J. Removal of chromium from wastewater by membrane filtration, chemical precipitation, ion exchange, adsorption electrocoagulation, electrochemical reduction, electrodialysis, electrodeionization, photocatalysis and nanotechnology: a review. Environ. Chem. Lett, 2020, pp. 1-14.
[20]. Ahangaran, E., Aghaie, H., & Fazaeli, R. Study of Amoxicillin Adsorption on the Silanized Multiwalled Carbon Nanotubes: Isotherms, Kinetics, and Thermodynamics Study. Russ. J. Physic. Chem. A, 2020, vol. 94, no. 13, pp. 2818-2828.
[21]. Donkadokula, N. Y., Kola, A. K., Naz, I., & Saroj, D. A review on advanced physico-chemical and biological textile dye wastewater treatment techniques. Rev. Environ. Sci. Biotechnol. 2020, pp.1-18.
[22]. Elmi Fard, N., & Fazaeli, R. Experimental design study of RB 255 photocatalytic degradation under visible light using synthetic Ag/TiO2 nanoparticles: Optimization of experimental conditions. Iran. J. Catal, 2018, vol. 8, no. 2, pp. 133-141.
[23]. Fard, N. E., & Fazaeli, R. Optimization of Operating Parameters in Photocatalytic Activity of Visible Light Active Ag/TiO2 Nanoparticles. Russ. J. Physic. Chem. A, 2018, vol. 92, no. 13, pp. 2835-2846.
[24]. Fard, N. E., Fazaeli, R., Yousefi, M., & Abdolmohammadi, S. Oxidation of carbazole by shape-controllable Cu2O on MWW catalysis. Appl. Physic. A, 2019, vol. 125, no. 9, pp. 632.
[25]. Fard, N. E., Fazaeli, R., Yousefi, M., & Abdolmohammadi, S. Morphology‐Controlled Synthesis of CuO, CuO Rod/MWW Composite for Advanced Oxidation of Indole and Benzothiophene. Chem. Select, 2019, vol. 4, no. 33, pp. 9529-9539.
[26]. Adityosulindro, S., Julcour, C., & Barthe, L. Heterogeneous Fenton oxidation using Fe-ZSM5 catalyst for removal of ibuprofen in wastewater. J. Environ. Chem. Eng, 2018, vol. 6. no. 5, pp. 5920-5928.
[27]. Dehghani, M. H., Kamalian, S., Shayeghi, M., Yousefi, M., Heidarinejad, Z., Agarwal, S., & Gupta, V. K. High-performance removal of diazinon pesticide from water using multi-walled carbon nanotubes. Microchem J, 2019, vol. 145, pp. 486-491.
[28]. Wang, Z., Sim, A., Urban, J. J., & Mi, B. Removal and recovery of heavy metal ions by two-dimensional MoS2 nanosheets: performance and mechanisms. Environ. Sci. Technol, 2018, vol. 52, no. 17, pp. 9741-9748.
[29]. Wang, Z., & Mi, B. Environmental applications of 2D molybdenum disulfide (MoS2) nanosheets. Environmental science & technology, 2017, vol. 51, no. 15, pp. 8229-8244.
[30]. Zhao, H., Mu, X., Zheng, C., Liu, S., Zhu, Y., Gao, X., & Wu, T. Structural defects in 2D MoS2 nanosheets and their roles in the adsorption of airborne elemental mercury. J. Hazard. Mater, 2019, vol. 366, pp. 240-249.
[31]. Kashi, N., Fard, N. E., & Fazaeli, R. Empirical modeling and CCD-based RSM optimization of Cd (II) adsorption from aqueous solution on clinoptilolite and bentonite. Russ. J. Appl. Chem, 2017, vol. 90, no. 6, pp. 977-992.
[32]. Fazaeli, R., & Fard, N. E. Desulfurization of Gasoline Fuel via Photocatalytic Oxidation/Adsorption Using NaX Zeolite-Based under Mild Conditions: Process Optimization by Central Composite Design. Russ. J. Appl. Chem, 2020, vol. 93, no. 7, pp. 973-982.
[33]. Fekr, S. S., Fard, N. E., & Fazaeli, R. Erratum to: Photocatalytic Degradation of Antibiotic Norfloxacin Aqueous Solution by Ce/Bi2WO6: Optimization and Simulation of Process by RSM. Russ. J. Appl. Chem, 2021, vol. 94 no. 7, pp.1009-1009.
[34]. Saadi, R., Saadi, Z., Fazaeli, R., & Fard, N. E. Monolayer and multilayer adsorption isotherm models for sorption from aqueous media. Korean. J. Chem. Eng, 2015, vol. 32, no. 5, pp. 787-799.
[35]. Vandani, S. A. K., Fazaeli, R., Saravani, M. G., & Pasdar, H. Preparation of Ni/CuO/MCM-41 for indole oxidation: optimisation processes. J. Environ. Eng. Sci. 2021, vol. 17, no. 1, pp.10-20.
[36]. Vandani, S. A. K., Fazaeli, R., Giahi Saravani, M., & Pasdar, H. Cu (II)/Z4A as an Efficient Nanocomposite for Oxidative Degradation of Indole and Optimization of Effective Factors via RSM Procedure. Egypt. J. Chem., 2021, vol. 64, no. 10, pp. 3-4.