کنترل قارچ عامل کپک خاکستری توت فرنگی با کاربرد تلفیقی گونه های مختلف تریکودرما و سالیسیلیکاسید
محورهای موضوعی :
قارچ شناسی
ساقی یونسی بانه
1
,
مهرداد صالح زاده
2
,
محمد جواد سلیمانی پری
3
1 - کارشناس ارشد بیماری شناسی گیاهی، دانشکده کشاورزی، دانشگاه بوعلی سینا همدان
2 - شیراز- دانشگاه شیراز- دانشکده کشاورزی
3 - دانشیار بیماری شناسی گیاهی، دانشکده ی کشاورزی، دانشگاه بوعلی سینا همدان
تاریخ دریافت : 1401/10/15
تاریخ پذیرش : 1402/02/29
تاریخ انتشار : 1402/03/15
کلید واژه:
کنترل بیولوژیک,
کردستان,
تریکودرما,
کپک خاکستری توت فرنگی,
چکیده مقاله :
سابقه و هدف: پوسیدگی ناشی از کپک خاکستری توت فرنگی (B. cinerea) یکی از مهم ترین پوسیدگی های خسارت زا روی این محصول از مزرعه تا بازار فروش است. هدف این پژوهش شناسایی عوامل کنترل بیولوژیک و ترکیبات القاءگر واکنش های دفاعی گیاه است که می توانند سبب کاهش یا قطع سم پاشی با ترکیبات قارچکش روی محصول توتفرنگی شوند.مواد و روش ها: در این پژوهش جدایه های مختلف B. cinerea ازگلخانه و مزارع استان کردستان جمع آوری و خصوصیات مورفولوژی و مولکولی آن ها تعیین شد. در ادامه غلظت های مختلف سالیسیلیک اسید (SA) به صورت منفرد و همچنین به صورت کاربرد تلفیقی با گونه های مختلف تریکودرما در آزمایشگاه و گلخانه روی قارچ کپک خاکستری توت فرنگی مورد بررسی قرار گرفت.یافته ها: در مقایسه میانگین ها، بیشترین درصد بازدارندگی در کشت متقابل بین تریکودرما و بوتریتیس، مربوط به جدایه T. orientalis (82/60 درصد) و بیشترین درصد بازدارندگی ترشحات خارج سلولی جدایه های تریکودرما بر روی رشد پرگنه بوتریتیس در هر دو غلظت 15 و 30 درصد، مربوط به T. ceramicum (57/85 درصد) بود. بررسی تاثیر ترکیبات فرار گونه های مختلف تریکودرما بر روی رشد پرگنه B. cinerea نشان داد بیشترین درصد بازدارندگی مربوط به تیمار جدایه T. asperellum با 70/63 درصد است. بررسی تاثیرسالیسیلیک ا سید در جلوگیری از رشد میسلیومی قارچ بوتریتیس در آزمایشگاه نشان داد که با افزایش غلظت سالیسیلیک اسید از 1 به 2 میلی مولار درصد بازدارندگی از قارچ افزایش تا 61 درصد می یابد.نتیجه گیری: کاربرد برخی گونه های تریکودرما به همراه سالیسیلیک اسید باعث افزایش مقاومت توت فرنگی به بیماری کپک خاکستری در مزرعه و آزمایشگاه می شود.
چکیده انگلیسی:
Background & Objectives: The rot caused by strawberry gray mold (Botrytis cinerea) is one of the most important rots causing damage in the field and market. The purpose of this research is that biological control agents and compounds inducing plant defense reactions seem to lead to a reduction in the frequency of spraying or not spraying fungicide compounds on the crop.Materials & Methods: Different isolates of B. cinerea were collected from greenhouses and farms in Kurdistan province, and their morphological and molecular characteristics were determined. In the following, different concentrations of salicylic acid (SA) either individually or in combination with different Trichoderma species were investigated in the laboratory and greenhouse on strawberry gray mold.Results: In the comparison of averages, the highest percentage of inhibition in the cross-culture between Trichoderma spp and Botrytis sp. is related to T. orientalis (60.82%), the highest percentage of inhibition of the extracellular secretions of Trichoderma isolates on the growth of Botrytis in each two concentrations of 15 and 30% related to T. ceramicum was 85.57% and the effect of volatile compounds of different Trichoderma species on the growth of B. cinerea showed that the highest percentage of inhibition was related to the treatment of T. asperellum isolate with 63.70%. Investigating the effect of salicylic acid in preventing the mycelium growth of botrytis fungus in the laboratory showed that with increasing concentration of salicylic acid from 1 to 2 millimolar, the inhibition percentage of Botrytis cinera increased to 61%.Conclusion: The results of the experiment showed that the use of some Trichoderma species along with salicylic acid increases the resistance and control of strawberry to gray mold disease in the field and laboratory.
منابع و مأخذ:
Dara SK. The new integrated pest management paradigm for the modern age. J Integr Pest Manag. 2019; 10(1): 12.
Emadi MH, Rahmanian M. Commentary on challenges to taking a food systems approach within the food and agriculture organization (FAO). In Food Security and Land Use Change under Conditions of Climatic Variability 2020 (pp. 19-31). Springer, Cham.
Suárez MB, Sanz L, Chamorro MI, Rey M, González FJ, Llobell A, Monte E. Proteomic analysis of secreted proteins from Trichoderma harzianum: identification of a fungal cell wall-induced aspartic protease. Fungal Genet Biol. 2005; 42(11): 924-934.
Liu SY, Lo CT, Shibu MA, Leu YL, Jen BY, Peng KC. Study on the anthraquinones separated from the cultivation of Trichoderma harzianum strain Th-R16 and their biological activity. J Agric Food Chem. 2009; 57(16):7288-7292.
Ding CK, Wang C, Gross KC, Smith DL. Jasmonate and salicylate induce the expression of pathogenesis-related-protein genes and increase resistance to chilling injury in tomato fruit. Planta. 2002; 214(6): 895-901.
Elad Y, Williamson B, Tudzynski P, Delen N. Botrytis and diseases they cause in agricultural systems–an introduction. In Botrytis: Biology, pathology and control 2007 (pp. 1-8). Springer, Dordrecht.
Zhao Y, Wei T, Yin KQ, Chen Z, Gu H, Qu LJ, Qin G. Arabidopsis RAP2. 2 plays an important role in plant resistance to Botrytis cinerea and ethylene responses. New Phytol. 2012; 195(2):450-460.
Verma M, Brar SK, Tyagi RD, Surampalli RN, Valero JR. Antagonistic fungi, Trichoderma: panoply of biological control. Biochemical Engineering Journal. 2007 Oct 15;37(1):1-20.
Iizasa EI, Mitsutomi M, Nagano Y. Direct binding of a plant LysM receptor-like kinase, LysM RLK1/CERK1, to chitin in vitro. JBC. 2010; 285(5): 2996-3004.
Rigotti S, Gindro K, Viret O. Two new primers highly specific for the detection of" Botrytis cinerea" Pers. Fr. 2006; 1000-1008pp.
Murray MG, Thompson W. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 1980; 8(19): 4321-4326.
Nazmi Roodsari F, Zafari D, Khodaparast SA, Rouhani H. New species of Trichoderma for Iran. Rostaniha. 2007; 8(1): 67-83.
Rosslenbroich HJ, Stuebler D. Botrytis cinerea history of chemical control and novel fungicides for its management. Crop prot. 2000; 19(8-10): 557-561.
Braun PG, Sutton JC. Inoculum sources of Botrytis cinerea in fruit rot of strawberries in Ontario. Can J Plant Pathol. 1987; 9(1): 1-5.
Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Barbetti MJ, Li H, Woo SL, Lorito M. A novel role for Trichoderma secondary metabolites in the interactions with plants. Physiol Mol plant pathol. 2008; 72(1-3): 80-86.
Blanco-Ulate B, Vincenti E, Powell AL, Cantu D. Tomato transcriptome and mutant analyses suggest a role for plant stress hormones in the interaction between fruit and Botrytis cinerea. Front Plant sci. 2013; 4: 142.
Geng L, Fu Y, Peng X, Yang Z, Zhang M, Song Z, Guo N, Chen S, Chen J, Bai B, Liu A. Biocontrol potential of Trichoderma harzianum against Botrytis cinerea in tomato plants. Biol Control. 2022; 174: 105019.
Dutta P, Deb L, Pandey AK. Trichoderma-from lab bench to field application: Looking back over 50 years. Front Agron. 2022; 4: 932839.
Harman GE, Shoresh M. The mechanisms and applications of symbiotic opportunistic plant symbionts. InNovel biotechnologies for biocontrol agent enhancement and management 2007 (pp. 131-155). Springer, Dordrecht.
Druzhinina IS, Seidl-Seiboth V, Herrera-Estrella A, Horwitz BA, Kenerley CM, Monte E, Mukherjee PK, Zeilinger S, Grigoriev IV, Kubicek CP. Trichoderma: the genomics of opportunistic success. Nat Rev microbiol. 2011; 9(10): 749-759.
Cheng CH, Yang CA, Liu SY, Lo CT, Peng KC. L-Amino acid oxidase-induced apoptosis in filamentous Botrytis cinerea. Anal Biochem. 2012; 420(1): 93-95.
Łaźniewska J, Macioszek VK, Lawrence CB, Kononowicz AK. Fight to the death: Arabidopsis thaliana defense response to fungal necrotrophic pathogens. Acta Physiol Plant. 2010; 32(1):1-10.
Brotman Y, Lisec J, Méret M, Chet I, Willmitzer L, Viterbo A. Transcript and metabolite analysis of the Trichoderma-induced systemic resistance response to Pseudomonas syringae in Arabidopsis thaliana. Microbiology. 2012; 158(1): 139-146.
Korolev N, Rav David D, Elad Y. The role of phytohormones in basal resistance and Trichoderma-induced systemic resistance to Botrytis cinerea in Arabidopsis thaliana. BioControl. 2008; 53(4): 667-683.
Morán-Diez E, Hermosa R, Ambrosino P, Cardoza RE, Gutiérrez S, Lorito M, Monte E. The ThPG1 endopolygalacturonase is required for the Trichoderma harzianum–plant beneficial interaction. MPMI. 2009; 22(8): 1021-1031.
Bae H, Roberts DP, Lim HS, Strem MD, Park SC, Ryu CM, Melnick RL, Bailey BA. Endophytic Trichoderma isolates from tropical environments delay disease onset and induce resistance against Phytophthora capsici in hot pepper using multiple mechanisms. MPMI. 2011; 24(3): 336-351.
Joo JH, Hussein KA. Biological Control and Plant Growth Promotion Properties of Volatile Organic Compound-Producing Antagonistic Trichoderma Front Plant Sci. 2022; 13.
Chavez-Jalk A, Leiva S, Bobadilla LG, Vigo CN, Arce M, Oliva-Cruz M. Effect of endophytic Trichoderma sp. strains on the agronomic characteristics of ecotypes of Theobroma cacao L. under nursery conditions in Peru. . Int J Agron. 2022; 5297706: 1-8.
Ashrafi A, Salehzadeh M, Khezrinezhad N. Detection and Identification of Tomato wilt disease in East Azerbaijan Province and Controlling It Using Antagonist Bacteria. Genetic Engineering and Biosafety Journal. 2020 Aug 10;9(1):28-39.
Freeman S, Minz D, Kolesnik I, Barbul O, Zveibil A, Maymon M, Nitzani Y, Kirshner B, Rav-David D, Bilu A, Dag A. Trichoderma biocontrol of Colletotrichum acutatum and Botrytis cinerea and survival in strawberry. Eur J Plant Pathol. 2004; 110(4): 361-370
Salas-Marina MA, Silva-Flores MA, Uresti-Rivera EE, Castro-Longoria E, Herrera-Estrella A, Casas-Flores S. Colonization of Arabidopsis roots by Trichoderma atroviride promotes growth and enhances systemic disease resistance through jasmonic acid/ethylene and salicylic acid pathways. Eur J Plant Pathol. 2011; 131(1):15-26.
Amin F, Razdan VK. Potential of Trichoderma species as biocontrol agents of soil borne fungal propagules. J Phytol. 2010; 2(10): 38-41.
Huang J, Gu M, Lai Z, Fan B, Shi K, Zhou YH, Yu JQ, Chen Z. Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress. Plant Physiol. 2010; 153(4):1526-1538.
Mathys J, De Cremer K, Timmermans P, Van Kerckhove S, Lievens B, Vanhaecke M, Cammue BP, De Coninck B. Genome-wide characterization of ISR induced in Arabidopsis thaliana by Trichoderma hamatum T382 against Botrytis cinerea Front plant sci. 2012; 3:108.
Hermosa R, Viterbo A, Chet I, Monte E. Plant-beneficial effects of Trichoderma and of its genes. Microbiology. 2012; 158(1): 17-25.
Aleaghaee S, Rezaee S, Ebadi M, Zamanizadeh H. Biological control of Fusarium oxysporum sp. lycopersici and induction of defensive enzyme of phenylalanine ammonialyse in tomato by Trichoderma and Bacillus antagonist isolates. JMW. 2019; 12(2): 125-138.
Omidinasab M, Darvishnia M. Biological control of Rhizoctonia solani by Pseudomonas strains isolated from the rhizosphere. JMW. 2018; 10(4): 386-393.
Risoli S, Cotrozzi L, Sarrocco S, Nuzzaci M, Pellegrini E, Vitti A. Trichoderma-Induced Resistance to Botrytis cinerea in Solanum Species: A Meta-Analysis. Plants. 2022; 11(2): 180.
De Simone N, Pace B, Grieco F, Chimienti M, Tyibilika V, Santoro V, Capozzi V, Colelli G, Spano G, Russo P. Botrytis cinerea and table grapes: A review of the main physical, chemical, and bio-based control treatments in post-harvest. Foods. 2020; 9(9):1138.
Silva LG, Camargo RC, Mascarin GM, NUNES PD, Dunlap C, Bettiol W. Dual functionality of Trichoderma: biocontrol of Sclerotinia sclerotiorum and biostimulant of cotton plants. Plant Sci. 2022; 3:108.
_||_
Dara SK. The new integrated pest management paradigm for the modern age. J Integr Pest Manag. 2019; 10(1): 12.
Emadi MH, Rahmanian M. Commentary on challenges to taking a food systems approach within the food and agriculture organization (FAO). In Food Security and Land Use Change under Conditions of Climatic Variability 2020 (pp. 19-31). Springer, Cham.
Suárez MB, Sanz L, Chamorro MI, Rey M, González FJ, Llobell A, Monte E. Proteomic analysis of secreted proteins from Trichoderma harzianum: identification of a fungal cell wall-induced aspartic protease. Fungal Genet Biol. 2005; 42(11): 924-934.
Liu SY, Lo CT, Shibu MA, Leu YL, Jen BY, Peng KC. Study on the anthraquinones separated from the cultivation of Trichoderma harzianum strain Th-R16 and their biological activity. J Agric Food Chem. 2009; 57(16):7288-7292.
Ding CK, Wang C, Gross KC, Smith DL. Jasmonate and salicylate induce the expression of pathogenesis-related-protein genes and increase resistance to chilling injury in tomato fruit. Planta. 2002; 214(6): 895-901.
Elad Y, Williamson B, Tudzynski P, Delen N. Botrytis and diseases they cause in agricultural systems–an introduction. In Botrytis: Biology, pathology and control 2007 (pp. 1-8). Springer, Dordrecht.
Zhao Y, Wei T, Yin KQ, Chen Z, Gu H, Qu LJ, Qin G. Arabidopsis RAP2. 2 plays an important role in plant resistance to Botrytis cinerea and ethylene responses. New Phytol. 2012; 195(2):450-460.
Verma M, Brar SK, Tyagi RD, Surampalli RN, Valero JR. Antagonistic fungi, Trichoderma: panoply of biological control. Biochemical Engineering Journal. 2007 Oct 15;37(1):1-20.
Iizasa EI, Mitsutomi M, Nagano Y. Direct binding of a plant LysM receptor-like kinase, LysM RLK1/CERK1, to chitin in vitro. JBC. 2010; 285(5): 2996-3004.
Rigotti S, Gindro K, Viret O. Two new primers highly specific for the detection of" Botrytis cinerea" Pers. Fr. 2006; 1000-1008pp.
Murray MG, Thompson W. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 1980; 8(19): 4321-4326.
Nazmi Roodsari F, Zafari D, Khodaparast SA, Rouhani H. New species of Trichoderma for Iran. Rostaniha. 2007; 8(1): 67-83.
Rosslenbroich HJ, Stuebler D. Botrytis cinerea history of chemical control and novel fungicides for its management. Crop prot. 2000; 19(8-10): 557-561.
Braun PG, Sutton JC. Inoculum sources of Botrytis cinerea in fruit rot of strawberries in Ontario. Can J Plant Pathol. 1987; 9(1): 1-5.
Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Barbetti MJ, Li H, Woo SL, Lorito M. A novel role for Trichoderma secondary metabolites in the interactions with plants. Physiol Mol plant pathol. 2008; 72(1-3): 80-86.
Blanco-Ulate B, Vincenti E, Powell AL, Cantu D. Tomato transcriptome and mutant analyses suggest a role for plant stress hormones in the interaction between fruit and Botrytis cinerea. Front Plant sci. 2013; 4: 142.
Geng L, Fu Y, Peng X, Yang Z, Zhang M, Song Z, Guo N, Chen S, Chen J, Bai B, Liu A. Biocontrol potential of Trichoderma harzianum against Botrytis cinerea in tomato plants. Biol Control. 2022; 174: 105019.
Dutta P, Deb L, Pandey AK. Trichoderma-from lab bench to field application: Looking back over 50 years. Front Agron. 2022; 4: 932839.
Harman GE, Shoresh M. The mechanisms and applications of symbiotic opportunistic plant symbionts. InNovel biotechnologies for biocontrol agent enhancement and management 2007 (pp. 131-155). Springer, Dordrecht.
Druzhinina IS, Seidl-Seiboth V, Herrera-Estrella A, Horwitz BA, Kenerley CM, Monte E, Mukherjee PK, Zeilinger S, Grigoriev IV, Kubicek CP. Trichoderma: the genomics of opportunistic success. Nat Rev microbiol. 2011; 9(10): 749-759.
Cheng CH, Yang CA, Liu SY, Lo CT, Peng KC. L-Amino acid oxidase-induced apoptosis in filamentous Botrytis cinerea. Anal Biochem. 2012; 420(1): 93-95.
Łaźniewska J, Macioszek VK, Lawrence CB, Kononowicz AK. Fight to the death: Arabidopsis thaliana defense response to fungal necrotrophic pathogens. Acta Physiol Plant. 2010; 32(1):1-10.
Brotman Y, Lisec J, Méret M, Chet I, Willmitzer L, Viterbo A. Transcript and metabolite analysis of the Trichoderma-induced systemic resistance response to Pseudomonas syringae in Arabidopsis thaliana. Microbiology. 2012; 158(1): 139-146.
Korolev N, Rav David D, Elad Y. The role of phytohormones in basal resistance and Trichoderma-induced systemic resistance to Botrytis cinerea in Arabidopsis thaliana. BioControl. 2008; 53(4): 667-683.
Morán-Diez E, Hermosa R, Ambrosino P, Cardoza RE, Gutiérrez S, Lorito M, Monte E. The ThPG1 endopolygalacturonase is required for the Trichoderma harzianum–plant beneficial interaction. MPMI. 2009; 22(8): 1021-1031.
Bae H, Roberts DP, Lim HS, Strem MD, Park SC, Ryu CM, Melnick RL, Bailey BA. Endophytic Trichoderma isolates from tropical environments delay disease onset and induce resistance against Phytophthora capsici in hot pepper using multiple mechanisms. MPMI. 2011; 24(3): 336-351.
Joo JH, Hussein KA. Biological Control and Plant Growth Promotion Properties of Volatile Organic Compound-Producing Antagonistic Trichoderma Front Plant Sci. 2022; 13.
Chavez-Jalk A, Leiva S, Bobadilla LG, Vigo CN, Arce M, Oliva-Cruz M. Effect of endophytic Trichoderma sp. strains on the agronomic characteristics of ecotypes of Theobroma cacao L. under nursery conditions in Peru. . Int J Agron. 2022; 5297706: 1-8.
Ashrafi A, Salehzadeh M, Khezrinezhad N. Detection and Identification of Tomato wilt disease in East Azerbaijan Province and Controlling It Using Antagonist Bacteria. Genetic Engineering and Biosafety Journal. 2020 Aug 10;9(1):28-39.
Freeman S, Minz D, Kolesnik I, Barbul O, Zveibil A, Maymon M, Nitzani Y, Kirshner B, Rav-David D, Bilu A, Dag A. Trichoderma biocontrol of Colletotrichum acutatum and Botrytis cinerea and survival in strawberry. Eur J Plant Pathol. 2004; 110(4): 361-370
Salas-Marina MA, Silva-Flores MA, Uresti-Rivera EE, Castro-Longoria E, Herrera-Estrella A, Casas-Flores S. Colonization of Arabidopsis roots by Trichoderma atroviride promotes growth and enhances systemic disease resistance through jasmonic acid/ethylene and salicylic acid pathways. Eur J Plant Pathol. 2011; 131(1):15-26.
Amin F, Razdan VK. Potential of Trichoderma species as biocontrol agents of soil borne fungal propagules. J Phytol. 2010; 2(10): 38-41.
Huang J, Gu M, Lai Z, Fan B, Shi K, Zhou YH, Yu JQ, Chen Z. Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress. Plant Physiol. 2010; 153(4):1526-1538.
Mathys J, De Cremer K, Timmermans P, Van Kerckhove S, Lievens B, Vanhaecke M, Cammue BP, De Coninck B. Genome-wide characterization of ISR induced in Arabidopsis thaliana by Trichoderma hamatum T382 against Botrytis cinerea Front plant sci. 2012; 3:108.
Hermosa R, Viterbo A, Chet I, Monte E. Plant-beneficial effects of Trichoderma and of its genes. Microbiology. 2012; 158(1): 17-25.
Aleaghaee S, Rezaee S, Ebadi M, Zamanizadeh H. Biological control of Fusarium oxysporum sp. lycopersici and induction of defensive enzyme of phenylalanine ammonialyse in tomato by Trichoderma and Bacillus antagonist isolates. JMW. 2019; 12(2): 125-138.
Omidinasab M, Darvishnia M. Biological control of Rhizoctonia solani by Pseudomonas strains isolated from the rhizosphere. JMW. 2018; 10(4): 386-393.
Risoli S, Cotrozzi L, Sarrocco S, Nuzzaci M, Pellegrini E, Vitti A. Trichoderma-Induced Resistance to Botrytis cinerea in Solanum Species: A Meta-Analysis. Plants. 2022; 11(2): 180.
De Simone N, Pace B, Grieco F, Chimienti M, Tyibilika V, Santoro V, Capozzi V, Colelli G, Spano G, Russo P. Botrytis cinerea and table grapes: A review of the main physical, chemical, and bio-based control treatments in post-harvest. Foods. 2020; 9(9):1138.
Silva LG, Camargo RC, Mascarin GM, NUNES PD, Dunlap C, Bettiol W. Dual functionality of Trichoderma: biocontrol of Sclerotinia sclerotiorum and biostimulant of cotton plants. Plant Sci. 2022; 3:108.