جداسازی میکروارگانیسم های تجزیه کننده فلورن از رسوبات سواحل جنوبی دریای خزر به منظور ارزیابی توان اصلاح زیستی
محورهای موضوعی : میکروب شناسی محیطیاحترام سادات رحیمی 1 , جمشید فولادی 2 * , غلامحسین ابراهیمی پور 3 , محمدرضا صعودی 4 , طیبه فولادی 5
1 - گروه میکروبیولوژی، دانشکده علوم زیستی، دانشگاه الزهرا(س)،تهران،ایران
2 - گروه بیوتکنولوژی، دانشکده علوم زیستی، دانشگاه الزهرا(س)، تهران، ایران
3 - گروه میکروبیولوژی و زیست فناوری میکروبی، دانشکده علوم و فناوری زیستی، دانشگاه شهید بهشتی، تهران، ایران
4 - گروه میکروبیولوژی، دانشکده علوم زیستی، دانشگاه الزهرا(س)، تهران، ایران
5 - گروه میکروبیولوژی، دانشکده علوم زیستی، دانشگاه الزهرا(س)،تهران،ایران
کلید واژه: گاز کروماتوگرافی, تجزیه زیستی, فلورن, محیط دریایی,
چکیده مقاله :
سابقه و هدف: هیدروکربن های آروماتیک چند حلقه ای، یکی از مهمترین آلاینده های زیست محیطی هستند. پاکسازی زیستی با استفاده از میکروارگانیسم ها، روشی مقرون به صرفه و ایمن جهت حذف و یا تبدیل این آلاینده ها به ترکیباتی با سمّیت کمتر است. این مطالعه با هدف جداسازی و معرفی میکروارگانیسم های تجزیه کننده فلورن از سواحل جنوبی دریای خزر انجام گردید.مواد و روش ها: غنی سازی و جداسازی مخلوط میکروبی، در محیط کشت پایه نمکی حاوی فلورن انجام شد. تجزیه کیفی فلورن در محیط پایه نمکی جامد بررسی شد. میزان تجزیه فلورن توسط مخلوط میکروبی نیز با استفاده از کروماتوگرافی گازی در محیط پایه نمکی مایع تعیین شد. شناسایی مولکولی جدایه های باکتریایی و قارچی به ترتیب با تعیین توالی 16S rRNA و ناحیه محافظت شده ITS انجام گردید.یافته ها: مخلوط میکروبی شامل سویه های باکتریایی (متعلق به جنس های سودوموناس، آکروموباکتر، کریزئوباکتریوم، میکروباکتریوم و رودوکوکوس) و سویه ی قارچی (متعلق به جنس فوزاریوم) غنی سازی و جداسازی شد. آنالیزکروماتوگرافی نشان داد که مخلوط میکروبی قادر است در دمای 30 درجه سلسیوس، اسیدیته 7 و طی 7 روز گرماگذاری، 87٪ از فلورن با غلظت 200 میلی گرم در لیتر را در محیط پایه نمکی تجزیه کند.نتیجه گیری: با توجه به نتایج، مخلوط میکروبی در شرایط یاد شده بخش گسترده ای از فلورن را از محیط پایه نمکی حذف می کند و در شرایط مشابه، ممکن است بتواند از طریق پاکسازی زیستی بخش چشمگیری از فلورن را از منطقه آلوده حذف کند.
Background and Objectives: Polycyclic aromatic hydrocarbons are one of the most important environmental pollutants. Bioremediation using microorganisms is a cost-effective and safe method for the removal or conversion of these pollutants to less toxic substances. This study aimed to isolate and introduce fluorene-degrading microorganisms from the southern coast of the Caspian Sea. Materials and Methods: The mixed microbial culture enrichment and isolation was done in salt-based culture medium containing fluorene. The qualitative analysis of fluorene degradation in the solid basal salt medium was investigated. The rate of fluorene removal by the isolated mixed microbial culture was also determined using gas chromatography in a liquid salt base medium. The molecular identification of the fungal and bacterial isolates was performed using the sequential analysis of the ITS protected region and 16S rRNA sequencing, respectively. Results: The mixed microbial culture including bacterial isolates (belonging to the genus Pseudomonas, Acromobacter, Chryseobacterium, Microbacterium, and Rhodococcus) and fungal isolate (belonging to the genus Fusarium) was enriched and isolated. Chromatographic analysis showed that the mixed microbial culture was able to degrade 87% of fluorene (200 mg / l ) in a basal salt medium at 30 °C, pH 7 and 7 days of incubation. Conclusion: According to the results, the mixed microbial can remove a large amount of fluorene from the basal salt medium under the mentioned conditions and it is possible that under a similar situation, it can remove a large amount of fluorene from the contaminated area through bioremediation.
384-389.
2. Efendieva LM. Ecological problems of oil exploitation in the Caspian Sea area. J Petrol Sci
Eng. 2000; 28: 228-231.
3. orotenko A, Mamedov RM, ontar AE, orotenko LA. Particle tracking method in the
approach for prediction of oil slick transport in the sea: modelling oil pollution resulting from
river input. J Mar Syst. 2004; 48: 159-170.
4. Hadizadeh Zaker N, Rahmani I, Shadi R, Moghaddam M. Concentrations and sources of
petroleum hydrocarbons in the sediments of Anzali Port in the Caspian Sea in Iran. Journal of
Environmental Studies. 2012; 37(60): 99-106. [In Persian]
5. Guntupalli S, Thunuguntla VBSC, Santha Reddy , Issac Newton M, Rao CV, Bondili JS.
Enhanced degradation of carcinogenic PAHs benzo (a) pyrene and benzo (k) fluoranthene by
a microbial consortium. Indian J Sci Technol. 2016; 9(35).
6. Haritash A , aushid CP. Biodegradation aspects of polyaromatic hydrocarbons (PAHs). J
Hazard Mater. 2009; 169(1-3):1-15.
7. Hatzinger PB, Alexander M. Effect of aging on chemicals in soil on their biodegradability and
extractability. Environ Sci Technol. 1995; 29(2): 537-545.
8. Hassanshahian M, Amini Boroujeni N. Enrichment and identification of naphthalene-degrading
bacteria from the Persian Gulf. Mar Pollut Bull. 2016; 107: 59-65.
9. uan S , Chang JS, ue JH, Chang BV. Biodegradation of phenanthrene in river sediment.
Chemosphere. 2001; 43: 273-278.
10. Dua M, Singh A, Sethunathan N, Johri A . Biotechnology and bioremediation: successes and
limitations. Appl Microbiol Biotechnol. 2002; 59(2-3):143-52.
11. Farhadian M, Duchez D, vachelard C, Larroche C. BT removal from polluted water through
bioleaching processes. Appl Biochem Biotechnol. 2008;151: 295-306.
12. Bamforth SM, Singleton I. Bioremediation of polycyclic aromatic hydrocarbons: current
knowledge and future directions. J Chem Technol Biotechnol. 2005; 80(7):723-736.
13. Wolicka D, Suszek A, Borkoowski A, Bielecka A. Application of aerobic microorganisms in
bioremediation in situ of soil contaminated by petroleum products. Bioresour Technol. 2009;
100: 3221-3227.
14. Salam BL, Obayori SO. Fluorene biodegradation potentials of Bacillus strains from tropical
hydrocarbon-contaminated soils. Afr J Biotechnol. 2014; 134(14): 1554-1559.
15. Hadibarata T, ristanti RA. Fluorene biodegradation and identification of transformation
products by white-rot fungus Armillaria sp. F022. Biodegradation. 2014; 25: 373-382.
16. Lu H, Zhu L. Pollution patterns of polycyclic aromatic hydrocarbons in tobacco smoke. J
Hazard Mater. 2007; 139: 193-8.
17. u H. Environmental carcinogenic polycyclic aromatic hydrocarbons: photochemistry and
phototoxicity. J Environ Sci Health. Part C: Environ Carcinog Ecotoxicol Rev. 2002; 20:
149-83.
18. Casellas M, Grifoll M, Bayona JM, Solanas MA. New Metabolites in the Degradation of
Fluorene by Arthrobacter sp. Strain F101. Appl Envion Microbiol. 1997; 63(3): 819-826.
19. Shao Z. Enrichment and Isolation of Hydrocarbon Degraders. In: Timmis N, McGenity TJ,
Van Der Meer JR, Lorenzo VD. Handbook of Hydrocarbon and Lipid Microbiology. 1St ed.
Springer‐Verlag Berlin Heidelberg. 2010; 3778-3785.
20. iyohara H, Nagao , ana . Rapid screen for bacteria degrading water-insoluble, solid
hydrocarbons on agar plates. Appl Environ Microbiol. 1982; 43(2): 454-457.
21. Wu R, Luo ZH, Vrijmoed LL. Biodegradation of anthracene and benz[a]anthracene by two
Fusarium solani strains isolated from mangrove sediments. Bioresour Technol. 2010; 101:
9666-9672.
22. Saba F, Papizadeh M, hansha J, Sedghi M, Rasooli M, Amoozegar MA, Soudi MR,
Shahzadeh Fazeli SA. Rapid and reproducible genomic DNA extraction protocol for
sequence-based identification of archaea, bacteria, cyanobacteria, diatoms, fungi, and green
algae. J Med Bacteriol. 2016; 5(3-4): 22-28.
23. Perelo LW. Review: In situ and bioremediation of organic pollutants in aquatic sediments. J
Hazard Mater. 2010; 177(1-3): 81-89.
24. Grifoll M, Casellas M, Bayona JM, Solanas MA. Isolation and characterization of a
fluorene-Degrading bacterium: identification of ring oxidation and ring fission products. Appl
Environ Microbiol. 1992; 58(9): 2910-2917.
25. Hassanshahian M, Emtiazi G, Cappello S. Isolation and characterization of
crude-oil-degrading bacteria from the Persian Gulf and the Caspian Sea. Mar Pollut Bull.
2012a; 64:7-12.
26. Moghadam MS, Ebrahimipour G, Abtahi B, Ghassempour A, Seyed Hashtroodi M.
Biodegradation of polycyclic aromatic hydrocarbons by a bacterial consortium enriched from
mangrove sediments. J Environ Health Sci Eng. 2014; 12(1):114.
27. Zafra G, Absalón ÁE, Anducho-Reyes MÁ, Fernandez FJ, Cortés-Espinosa DV. Construction
of PAH-degrading mixed microbial consortia by induced selection in soil. Chemosphere.
2017; 172:120-126.
28. Salam LB, Obayori OS, Olatoye NO. Biodegradation of anthracene by a novel actinomycete,
Microbacterium sp. isolated from tropical hydrocarbon-contaminated soil. World J Microbiol
Biotechnol. 2014; 30(1): 335-341.
29. Mueller JG, Chapman PJ, Blattmann BO, Pritchard PH. Isolation and characterization of a
fluoranthene-utilizing strain of Pseudomonas aucimobilis. Appl Environ Microbiol. 1990; 56
(4): 1079-1086.
30. Oyehan TA, Al-Thukair AA. Isolation and characterization of PAH-degrading bacteria from
the Eastern Province, Saudi Arabia. Mar Pollut Bull. 2016; 115(1): 39–46.
31. Nair D, Fernández-Acero FJ, García-Luque E, Riba I, Del Valls TA. Isolation and
characterization of naphthalene-degrading bacteria from sediments of Cadiz area (SW Spain).
Environ Toxicol. 2008; 23(5): 576-582.
32. Casellas M, Grifoll M, Sabate J, Solanas AM. Isolation and characterization of a
9-fluorenone-degrading bacterial strain and its role in synergistic degradation of fluorene by a
consortium. Can J Microbiol. 1998; 44(8):734-742.
33. Arulazhagan P, Vasudevan N. Role of a moderately halophilic bacterial consortium in the
biodegradation of polyaromatic hydrocarbons. Mar Pollut Bull. 2009; 58: 256-262.
34. James GA, orber DR, Caldwell DE, Costerton JW. Digital image analysis of growth and
starvation responses of a surface-colonizing Acinetobacter sp. J Bacteriol. 1995; 177: 907-915.
35. oung D. The selective value of bacterial shape. Microbiol Mol Biol Rev. 2006; 70:
660-703.
36. Bacosa HP, Inoue C. Polycyclic aromatic hydrocarbons (PAHs) biodegradation potential and
diversity of microbial consortia enriched from tsunami sediments in Miyagi, Japan. J Hazard
Mater. 2015; 283: 689-697.
37. Finkelstein ZI, Baskunov BP, Golovlev EL, Vervoort J, Rietjens IM, Baboshin MA,
Golovleva LA. Fluorene Transformation by Bacteria of the Genus Rhodococcus.
Microbiology. 2003; 72: 660-665.
38. Rabodonirina S, Rasolomampianina R, rier F, Drider D, Merhaby D, Net S, Ouddane B.
Degradation of fluorene and phenanthrene in PAHs-contaminated soil using Pseudomonas and
Bacillus strains isolated from oil spill sites. J Environ Manage. 2019; 15(232): 1-7.
39. Fulekar M, H. Microbial degradation of petrochemical waste-polycyclic aromatic.
hydrocarbons. Bioresour Bioprocess. 2017; 4(28): 1-16.
40. Oberoi AS, Philip L, Bhallamudi SM. Biodegradation of Various Aromatic Compounds by
Enriched Bacterial Cultures: Part A-Monocyclic and Polycyclic Aromatic Hydrocarbons. Appl
Biochem Biotechnol. 2015; 176(7): 1870-1888.
41. Guo W, Li D, Tao , Gao P, Hu J. Isolation and description of a stable carbazole degrading
microbial consortium consisting of Chryseobacterium sp. NC and Achromobacter sp. NCW.
Curr Microbiol. 2008; 57: 251-257.
42. Ben Said O, Goni-Urriza MS, El Bour M, Dellali M, Aissa P, Duran R. Characterization of
aerobic polycyclic aromatic hydrocarbon-degrading bacteria from Bizerte lagoon sediments,
Tunisia. J Appl Microbiol. 2007; 104(4): 987-997.
43. Wang C, Li D, Wang C. Biodegradation of naphthalene, phenanthrene, anthracene and pyrene
by Microbacterium sp. 3-28. Chinese Journal of Applied and Environmental Biology. 2009; 15
(3): 361-366.
44. Qin W, Zhu , Fan F, Wang , Liu , Ding A, Dou J. Biodegradation of benzo(a)pyrene by
Microbacterium sp. strain under denitrification: Degradation pathway and effects of limiting
electron acceptors or carbon source. Biochem Eng J. 2017; 121: 131-138.
45. Reyes-César A, Absalón ÁE, Fernández FJ, González JM, Cortés-Espinosa DV.
Biodegradation of a mixture of PAHs by non-ligninolytic fungal strains isolated from crude
oil-contaminated soil. World J Microbiol Biotechnol. 2014; 30(3): 999-1009.
46. Marco-Urrea E, Garcia-Romera I, Aranda E. Potential of non-ligninolytic fungi in
bioremediation of chlorinated and polycyclic aromatic hydrocarbons. N. Biotechnol. 2015; 32
(6): 620-628.
47. Mikeskova H, Novotny C, Svobodova . Interspecific interactions in mixed microbial cultures
in a biodegradation perspective. Appl Microbiol Biotechnol. 2012; 95: 861-870.
48. Furuno S, Pazolt , Rabe , Neu TR, Harms H, Wick L . Fungal mycelia allow chemotactic
dispersal of polycyclic aromatic hydrocarbon-degrading bacteria in water unsaturated systems.
Environ Microbiol. 2010; 12, 1391-1398.
49. Wang S, Nomura N, Nakajima T, Uchiyama H. Case study of the relationship between fungi
and bacteria associated with high-molecular-weight polycyclic aromatic hydrocarbon
degradation. J Biosci Bioeng. 2012a; 113: 624–630.
50. Marchand C, St-Arnaud M, Hogland W, Bell TH, Hijri M. Petroleum biodegradation capacity
of bacteria and fungi isolated from petroleum-contaminated soil. Int Biodeterior Biodegrad.
2017; 116: 48-57.
_||_
384-389.
2. Efendieva LM. Ecological problems of oil exploitation in the Caspian Sea area. J Petrol Sci
Eng. 2000; 28: 228-231.
3. orotenko A, Mamedov RM, ontar AE, orotenko LA. Particle tracking method in the
approach for prediction of oil slick transport in the sea: modelling oil pollution resulting from
river input. J Mar Syst. 2004; 48: 159-170.
4. Hadizadeh Zaker N, Rahmani I, Shadi R, Moghaddam M. Concentrations and sources of
petroleum hydrocarbons in the sediments of Anzali Port in the Caspian Sea in Iran. Journal of
Environmental Studies. 2012; 37(60): 99-106. [In Persian]
5. Guntupalli S, Thunuguntla VBSC, Santha Reddy , Issac Newton M, Rao CV, Bondili JS.
Enhanced degradation of carcinogenic PAHs benzo (a) pyrene and benzo (k) fluoranthene by
a microbial consortium. Indian J Sci Technol. 2016; 9(35).
6. Haritash A , aushid CP. Biodegradation aspects of polyaromatic hydrocarbons (PAHs). J
Hazard Mater. 2009; 169(1-3):1-15.
7. Hatzinger PB, Alexander M. Effect of aging on chemicals in soil on their biodegradability and
extractability. Environ Sci Technol. 1995; 29(2): 537-545.
8. Hassanshahian M, Amini Boroujeni N. Enrichment and identification of naphthalene-degrading
bacteria from the Persian Gulf. Mar Pollut Bull. 2016; 107: 59-65.
9. uan S , Chang JS, ue JH, Chang BV. Biodegradation of phenanthrene in river sediment.
Chemosphere. 2001; 43: 273-278.
10. Dua M, Singh A, Sethunathan N, Johri A . Biotechnology and bioremediation: successes and
limitations. Appl Microbiol Biotechnol. 2002; 59(2-3):143-52.
11. Farhadian M, Duchez D, vachelard C, Larroche C. BT removal from polluted water through
bioleaching processes. Appl Biochem Biotechnol. 2008;151: 295-306.
12. Bamforth SM, Singleton I. Bioremediation of polycyclic aromatic hydrocarbons: current
knowledge and future directions. J Chem Technol Biotechnol. 2005; 80(7):723-736.
13. Wolicka D, Suszek A, Borkoowski A, Bielecka A. Application of aerobic microorganisms in
bioremediation in situ of soil contaminated by petroleum products. Bioresour Technol. 2009;
100: 3221-3227.
14. Salam BL, Obayori SO. Fluorene biodegradation potentials of Bacillus strains from tropical
hydrocarbon-contaminated soils. Afr J Biotechnol. 2014; 134(14): 1554-1559.
15. Hadibarata T, ristanti RA. Fluorene biodegradation and identification of transformation
products by white-rot fungus Armillaria sp. F022. Biodegradation. 2014; 25: 373-382.
16. Lu H, Zhu L. Pollution patterns of polycyclic aromatic hydrocarbons in tobacco smoke. J
Hazard Mater. 2007; 139: 193-8.
17. u H. Environmental carcinogenic polycyclic aromatic hydrocarbons: photochemistry and
phototoxicity. J Environ Sci Health. Part C: Environ Carcinog Ecotoxicol Rev. 2002; 20:
149-83.
18. Casellas M, Grifoll M, Bayona JM, Solanas MA. New Metabolites in the Degradation of
Fluorene by Arthrobacter sp. Strain F101. Appl Envion Microbiol. 1997; 63(3): 819-826.
19. Shao Z. Enrichment and Isolation of Hydrocarbon Degraders. In: Timmis N, McGenity TJ,
Van Der Meer JR, Lorenzo VD. Handbook of Hydrocarbon and Lipid Microbiology. 1St ed.
Springer‐Verlag Berlin Heidelberg. 2010; 3778-3785.
20. iyohara H, Nagao , ana . Rapid screen for bacteria degrading water-insoluble, solid
hydrocarbons on agar plates. Appl Environ Microbiol. 1982; 43(2): 454-457.
21. Wu R, Luo ZH, Vrijmoed LL. Biodegradation of anthracene and benz[a]anthracene by two
Fusarium solani strains isolated from mangrove sediments. Bioresour Technol. 2010; 101:
9666-9672.
22. Saba F, Papizadeh M, hansha J, Sedghi M, Rasooli M, Amoozegar MA, Soudi MR,
Shahzadeh Fazeli SA. Rapid and reproducible genomic DNA extraction protocol for
sequence-based identification of archaea, bacteria, cyanobacteria, diatoms, fungi, and green
algae. J Med Bacteriol. 2016; 5(3-4): 22-28.
23. Perelo LW. Review: In situ and bioremediation of organic pollutants in aquatic sediments. J
Hazard Mater. 2010; 177(1-3): 81-89.
24. Grifoll M, Casellas M, Bayona JM, Solanas MA. Isolation and characterization of a
fluorene-Degrading bacterium: identification of ring oxidation and ring fission products. Appl
Environ Microbiol. 1992; 58(9): 2910-2917.
25. Hassanshahian M, Emtiazi G, Cappello S. Isolation and characterization of
crude-oil-degrading bacteria from the Persian Gulf and the Caspian Sea. Mar Pollut Bull.
2012a; 64:7-12.
26. Moghadam MS, Ebrahimipour G, Abtahi B, Ghassempour A, Seyed Hashtroodi M.
Biodegradation of polycyclic aromatic hydrocarbons by a bacterial consortium enriched from
mangrove sediments. J Environ Health Sci Eng. 2014; 12(1):114.
27. Zafra G, Absalón ÁE, Anducho-Reyes MÁ, Fernandez FJ, Cortés-Espinosa DV. Construction
of PAH-degrading mixed microbial consortia by induced selection in soil. Chemosphere.
2017; 172:120-126.
28. Salam LB, Obayori OS, Olatoye NO. Biodegradation of anthracene by a novel actinomycete,
Microbacterium sp. isolated from tropical hydrocarbon-contaminated soil. World J Microbiol
Biotechnol. 2014; 30(1): 335-341.
29. Mueller JG, Chapman PJ, Blattmann BO, Pritchard PH. Isolation and characterization of a
fluoranthene-utilizing strain of Pseudomonas aucimobilis. Appl Environ Microbiol. 1990; 56
(4): 1079-1086.
30. Oyehan TA, Al-Thukair AA. Isolation and characterization of PAH-degrading bacteria from
the Eastern Province, Saudi Arabia. Mar Pollut Bull. 2016; 115(1): 39–46.
31. Nair D, Fernández-Acero FJ, García-Luque E, Riba I, Del Valls TA. Isolation and
characterization of naphthalene-degrading bacteria from sediments of Cadiz area (SW Spain).
Environ Toxicol. 2008; 23(5): 576-582.
32. Casellas M, Grifoll M, Sabate J, Solanas AM. Isolation and characterization of a
9-fluorenone-degrading bacterial strain and its role in synergistic degradation of fluorene by a
consortium. Can J Microbiol. 1998; 44(8):734-742.
33. Arulazhagan P, Vasudevan N. Role of a moderately halophilic bacterial consortium in the
biodegradation of polyaromatic hydrocarbons. Mar Pollut Bull. 2009; 58: 256-262.
34. James GA, orber DR, Caldwell DE, Costerton JW. Digital image analysis of growth and
starvation responses of a surface-colonizing Acinetobacter sp. J Bacteriol. 1995; 177: 907-915.
35. oung D. The selective value of bacterial shape. Microbiol Mol Biol Rev. 2006; 70:
660-703.
36. Bacosa HP, Inoue C. Polycyclic aromatic hydrocarbons (PAHs) biodegradation potential and
diversity of microbial consortia enriched from tsunami sediments in Miyagi, Japan. J Hazard
Mater. 2015; 283: 689-697.
37. Finkelstein ZI, Baskunov BP, Golovlev EL, Vervoort J, Rietjens IM, Baboshin MA,
Golovleva LA. Fluorene Transformation by Bacteria of the Genus Rhodococcus.
Microbiology. 2003; 72: 660-665.
38. Rabodonirina S, Rasolomampianina R, rier F, Drider D, Merhaby D, Net S, Ouddane B.
Degradation of fluorene and phenanthrene in PAHs-contaminated soil using Pseudomonas and
Bacillus strains isolated from oil spill sites. J Environ Manage. 2019; 15(232): 1-7.
39. Fulekar M, H. Microbial degradation of petrochemical waste-polycyclic aromatic.
hydrocarbons. Bioresour Bioprocess. 2017; 4(28): 1-16.
40. Oberoi AS, Philip L, Bhallamudi SM. Biodegradation of Various Aromatic Compounds by
Enriched Bacterial Cultures: Part A-Monocyclic and Polycyclic Aromatic Hydrocarbons. Appl
Biochem Biotechnol. 2015; 176(7): 1870-1888.
41. Guo W, Li D, Tao , Gao P, Hu J. Isolation and description of a stable carbazole degrading
microbial consortium consisting of Chryseobacterium sp. NC and Achromobacter sp. NCW.
Curr Microbiol. 2008; 57: 251-257.
42. Ben Said O, Goni-Urriza MS, El Bour M, Dellali M, Aissa P, Duran R. Characterization of
aerobic polycyclic aromatic hydrocarbon-degrading bacteria from Bizerte lagoon sediments,
Tunisia. J Appl Microbiol. 2007; 104(4): 987-997.
43. Wang C, Li D, Wang C. Biodegradation of naphthalene, phenanthrene, anthracene and pyrene
by Microbacterium sp. 3-28. Chinese Journal of Applied and Environmental Biology. 2009; 15
(3): 361-366.
44. Qin W, Zhu , Fan F, Wang , Liu , Ding A, Dou J. Biodegradation of benzo(a)pyrene by
Microbacterium sp. strain under denitrification: Degradation pathway and effects of limiting
electron acceptors or carbon source. Biochem Eng J. 2017; 121: 131-138.
45. Reyes-César A, Absalón ÁE, Fernández FJ, González JM, Cortés-Espinosa DV.
Biodegradation of a mixture of PAHs by non-ligninolytic fungal strains isolated from crude
oil-contaminated soil. World J Microbiol Biotechnol. 2014; 30(3): 999-1009.
46. Marco-Urrea E, Garcia-Romera I, Aranda E. Potential of non-ligninolytic fungi in
bioremediation of chlorinated and polycyclic aromatic hydrocarbons. N. Biotechnol. 2015; 32
(6): 620-628.
47. Mikeskova H, Novotny C, Svobodova . Interspecific interactions in mixed microbial cultures
in a biodegradation perspective. Appl Microbiol Biotechnol. 2012; 95: 861-870.
48. Furuno S, Pazolt , Rabe , Neu TR, Harms H, Wick L . Fungal mycelia allow chemotactic
dispersal of polycyclic aromatic hydrocarbon-degrading bacteria in water unsaturated systems.
Environ Microbiol. 2010; 12, 1391-1398.
49. Wang S, Nomura N, Nakajima T, Uchiyama H. Case study of the relationship between fungi
and bacteria associated with high-molecular-weight polycyclic aromatic hydrocarbon
degradation. J Biosci Bioeng. 2012a; 113: 624–630.
50. Marchand C, St-Arnaud M, Hogland W, Bell TH, Hijri M. Petroleum biodegradation capacity
of bacteria and fungi isolated from petroleum-contaminated soil. Int Biodeterior Biodegrad.
2017; 116: 48-57.