بهینه سازی شرایط رشد و تولید رنگدانههای کارتنوئیدی جدا شده از گونههای میکروکوکوس و رودوتورولا
محورهای موضوعی : زیست فناوری میکروبیمریم زهری 1 , عباس اخوان سپهی 2 * , کیومرث امینی 3
1 - گروه میکروبیولوژی، دانشکده علوم پایه، واحد تهران شمال، دانشگاه آزاد اسلامی، تهران، ایران.
2 - گروه میکروبیولوژی، دانشکده علوم پایه، واحد تهران شمال، دانشگاه آزاد اسلامی، تهران، ایران.Iran
3 - گروه میکروبیولوژی، دانشکده علوم پایه، واحد ساوه، دانشگاه آزاد اسلامی، ساوه - ایران.
کلید واژه: اسپکتروفتومتری, FT-IR, میکروکوکوس لوتئوس, رودوتورولا موسیلاجینوسا,
چکیده مقاله :
سابقه و هدف: منابع بیولوژیک رنگدانهها به دلیل تفاوت آنها در خواص و شرایط تولید در مقایسه با روشهای تولید شیمیایی، مورد توجه پژوهشگرانِ این رشته ها قراراست. هدف از این مطالعه جداسازی کارتنوئیدهای تولیدی از گونههای میکروکوکوس و رودوتورولا از منابع خاکی، بهینهسازی شرایط کشت برای تولید زیست توده و شناسایی رنگدانه کارتنوئیدی جدا شده بوده است.مواد و روشها: این پژوهش به صورت مقطعی توصیفی بر روی 104 نمونهی میکروکوس و رودوتورولا (جدا شده از خاک مناطق کویری استان کرمان) انجام گرفت. سویههای میکروکوکوس لوتئوس و رودوتورولا موسیلاجینوسا مولد کارتنوئید، توسط آنالیز 16S rRNA شناسایی شدند. شرایط بهینه برای تولید بیومس و کارتنوئید تعیین گردید. رنگدانههای جدا شده به کمک اسپکتروفتومتری و FT-IR شناسایی گردیدند.یافتهها: شرایط بهینهی رشد و تولید رنگدانه از لحاظ دما برای هر دو تولید کنندهی رنگدانه دمای 25 درجهی سلسیوس بوده است. pH برای باکتریها 7 و برای مخمرها 5/6 شرایط بهینه را ایجاد نمود. یک درصد کربن در محیط کشت برای هر دو (باکتری و مخمر) شرایط بهینه بود و درصد نیتروژن برای باکتری میکروکوکوس لوتئوس دو درصد و برای مخمر رودوتورولا موسیلاجینوسا یک درصد بوده است.نتیجهگیری: دادههای به دست آمده در مطالعه حاضر نشان دادکه میکروارگانیسمهای شناسایی شده در این مطالعه به عنوان منبع بالقوه بومی خاک ایران در تولید کارتنوئید تجاری به حساب میآیند.
Background & Objectives:Biological sources of pigments receive major attention nowadays because of the stringent rules and regulations applied to chemically synthesized pigments. The aims of this study were isolating carotenoids producing Micrococcus spp < em>. and Rhodotorula spp. from soil sources, optimizing the culture conditions for biomass and carotenoids production and its identification. Materials and Methods: Carotenoid producing strains, M. luteus and R. mucilaginosa, were isolated from the soil and sediment samples in Kerman Province, Iran; they were identified using 16SrDNA analysis. Optimum conditions for biomass and carotenoids production were determined. FT-IR and spectrophotometry analysis showed high similarity of extracted pigments with carotenoids. Results: The optimum temperature of growth and pigment production was 25º C. for both of bacteria and yeasts. The optimum pH for bacteria was 7 and for yeasts 6.5. 1% of carbon source for both of them was the optimum condition while about nitrogen source, 2% for bacteria and 1% for yeasts were the optimum condition for growth and pigment production. Conclusion:Microorganisms presented in this study can be used as potential sources of commercial carotenoids production in Kerman, Iran.
and treatment. Br J Pharmacol. 2017;174(11):1290-324.
2. Mohana D, Thippeswamy S, Abhishe R. Antioxidant, antibacterial, and ultraviolet-protective
properties of carotenoids isolated from Micrococcus spp. Radiation Protection and
Environment. 2013;36(4):168-74.
3. Maria A , raziano R, Nicolantonio DO. Carotenoids: potential allies of cardiovascular
health? Food Nutr Res. 2015;59(1):26762.
4. Hashimoto H, Uragami C, Cogdell RJ. Carotenoids and photosynthesis. Carotenoids in
Nature: Springer; 2016. p. 111-39.
5. Netzer R, Stafsnes MH, Andreassen T, oksøyr A, Bruheim P, Brautaset T. Biosynthetic
pathway for γ-cyclic sarcinaxanthin in Micrococcus luteus: Heterologous expression and
evidence for diverse and multiple catalytic functions of C50 carotenoid cyclases. J Bacteriol.
2010;192(21):5688-99.
6. Benjamin S, Surekha P, Dhanya P. Micrococcus luteus Strain BAA2, A Novel Isolate
Produces Carotenoid Pigment. Electronic J Biol.12(1).
7. olmeh M, Khamiri M, haemi E, RamezanPour S. Antimicrobial Activity of Carotenoid
Pigments Extracted from Micrococcus roseus. Modares Journal of Biotechnology. 2018;9
(4):565-70.
8. olmeh M, Khomeiri M, horbani M, haemi E, Ramezanpour SS. High efficiency pigment
production from Micrococcus roseus (PTCC 1411) under ultraviolet irradiation. Biocatalysis
and agricultural biotechnology. 2017;9:156-61.
9. Barnett JA, Payne RW, arrow D. easts: characteristics and identification: Cambridge
University Press; 1983.
10. Silva LT. Evaluating the potential of yeast strains to produce added value products for the
food and/or pharmaceutical industries 2015.
11. Stafsnes MH. Characterization and exploitation of a marine microbial culture collection:
–a special focus on carotenoid producing heterotrophic bacteria. 2013.
12. Marova I, Carnecka M, Halienova A, Certik M, Dvorakova T, Haronikova A. Use of several
waste substrates for carotenoid-rich yeast biomass production. J Environ Manage.
2012;95:S338-S42.
13. hao , uo L, Xia , huang X, Chu W. Isolation, Identification of Carotenoid-Producing
Rhodotorula sp. from Marine Environment and Optimization for Carotenoid Production. Mar
Drugs. 2019;17(3):161.
14. oodwin TW. Chemistry and biochemistry of plant pigments: Academic Press; 1976.
15. Song M-J, Bae J, Lee D-S, Kim C-H, Kim J-S, Kim S-W, et al. Purification and
characterization of prodigiosin produced by integrated bioreactor from Serratia sp. KH-95. J
Biosci Bioeng. 2006;101(2):157-61.
16. Baskar , Madhanraj P, Kanimozhi K, Panneerselvam A. Characterization of carotenoids
from selected strains of Streptomyces sp. Ann Biol Res. 2010;1(4):194-200.
17. Rahimi MT, Sarvi S, Sharif M, Abediankenari S, Ahmadpour E, aladan R, et al. Molecular
Cloning, Expression and Characterization of Plasmid Encoding Rhomboid 4 (ROM4) of
Tachyzoite of Toxoplasma gondii RH Strain. Iranian journal of parasitology. 2017;12(4):498.
18. Csepanyi E, Czompa A, Haines D, Lekli I, Bakondi E, Balla , et al. Cardiovascular effects of
low versus high-dose beta-carotene in a rat model. Pharmacol Res. 2015;100:148-56.
19. Muthezhilan R, Ragul R, Pushpam R, Narayanan RL, Hussain AJ. Isolation, optimization and
extraction of microbial pigments from marine yeast Rhodotorula Sp (Amby109) as food
colourants. Biosci Biotechnol Res Asia. 2014;11:271-8.
20. Surekha P, Dhanya P, Sarath M, Pradeep S, Benjamin S. Micrococcus luteus strain BAA2, a
novel isolate produces carotenoid pigment. Electronic J of Biology. 2016;12(1):83-9.
21. Al-Wandawi H. Carotenoid Biosynthesis in Micrcoccus luteus rown in the Presence of
Different Concentrations of Nicotine. International Journal of Pure & Applied Sciences &
Technology. 2014;24(1).
22. Elsanhoty R, Al-Turki AI, M.M A-R. Production of carotenoids from Rhodotorula
mucilaginosa and their applications as colorant agent in sweet candy. 2017;15:21-6.
23. Taskin M, Sisman T, Erdal S, Kurbanoglu EB. Use of waste chicken feathers as peptone for
production of carotenoids in submerged culture of Rhodotorula glutinis MT-5. Eur Food Res
Technol. 2011;233(4):657.
24. Malisorn C, Suntornsuk W. Optimization of β-carotene production by Rhodotorula glutinis
DM28 in fermented radish brine. Bioresour Technol. 2008;99(7):2281-7.
25. Akinnibosun F, Omorodion S. Isolation and Characterization of Antibiotic-Resistant Bacteria
from Pesticide-Contaminated Agricultural Soils in Edo State, Nigeria. NISEB Journal.
2017;16(1).
26. Abbes M, Baati H, uermazi S, Messina C, Santulli A, harsallah N, et al. Biological
properties of carotenoids extracted from Halobacterium halobium isolated from a Tunisian
solar saltern. BMC Complement Altern Med. 2013;13(1):255.
27. Shree S, Prasad K , Arpitha H, Deepika U, Kumar KN, Mondal P, et al. β-carotene at
physiologically attainable concentration induces apoptosis and down-regulates cell survival
and antioxidant markers in human breast cancer (MCF-7) cells. Mol Cell Biochem. 2017;436
(1-2):1-12.
28. ijay K, Sowmya PR-R, Arathi BP, Shilpa S, Shwetha HJ, Raju M, et al. Low-dose
doxorubicin with carotenoids selectively alters redox status and upregulates oxidative
stress-mediated apoptosis in breast cancer cells. Food Chem Toxicol. 2018;118:675-90.
29. Heidari H. R. , Partovifar M. , and Memarpoor M., Evaluation of the Bioactive Potential of
Secondary Metabolites Produced by a New Marine Micrococcus Species Isolated from the
Persian ulf, Avicenna J Med Biotechnol. 2020 Jan-Mar; 12(1): 61–65.
30. Mohammadi M., Pourbabayee A. A., Javadi A., 2015, Optimization of carotenoid pigment
production by native strains Haloarchaea lipolitical, Journal of Microbial World, olume 8,
No. 2 (in persian)
_||_
and treatment. Br J Pharmacol. 2017;174(11):1290-324.
2. Mohana D, Thippeswamy S, Abhishe R. Antioxidant, antibacterial, and ultraviolet-protective
properties of carotenoids isolated from Micrococcus spp. Radiation Protection and
Environment. 2013;36(4):168-74.
3. Maria A , raziano R, Nicolantonio DO. Carotenoids: potential allies of cardiovascular
health? Food Nutr Res. 2015;59(1):26762.
4. Hashimoto H, Uragami C, Cogdell RJ. Carotenoids and photosynthesis. Carotenoids in
Nature: Springer; 2016. p. 111-39.
5. Netzer R, Stafsnes MH, Andreassen T, oksøyr A, Bruheim P, Brautaset T. Biosynthetic
pathway for γ-cyclic sarcinaxanthin in Micrococcus luteus: Heterologous expression and
evidence for diverse and multiple catalytic functions of C50 carotenoid cyclases. J Bacteriol.
2010;192(21):5688-99.
6. Benjamin S, Surekha P, Dhanya P. Micrococcus luteus Strain BAA2, A Novel Isolate
Produces Carotenoid Pigment. Electronic J Biol.12(1).
7. olmeh M, Khamiri M, haemi E, RamezanPour S. Antimicrobial Activity of Carotenoid
Pigments Extracted from Micrococcus roseus. Modares Journal of Biotechnology. 2018;9
(4):565-70.
8. olmeh M, Khomeiri M, horbani M, haemi E, Ramezanpour SS. High efficiency pigment
production from Micrococcus roseus (PTCC 1411) under ultraviolet irradiation. Biocatalysis
and agricultural biotechnology. 2017;9:156-61.
9. Barnett JA, Payne RW, arrow D. easts: characteristics and identification: Cambridge
University Press; 1983.
10. Silva LT. Evaluating the potential of yeast strains to produce added value products for the
food and/or pharmaceutical industries 2015.
11. Stafsnes MH. Characterization and exploitation of a marine microbial culture collection:
–a special focus on carotenoid producing heterotrophic bacteria. 2013.
12. Marova I, Carnecka M, Halienova A, Certik M, Dvorakova T, Haronikova A. Use of several
waste substrates for carotenoid-rich yeast biomass production. J Environ Manage.
2012;95:S338-S42.
13. hao , uo L, Xia , huang X, Chu W. Isolation, Identification of Carotenoid-Producing
Rhodotorula sp. from Marine Environment and Optimization for Carotenoid Production. Mar
Drugs. 2019;17(3):161.
14. oodwin TW. Chemistry and biochemistry of plant pigments: Academic Press; 1976.
15. Song M-J, Bae J, Lee D-S, Kim C-H, Kim J-S, Kim S-W, et al. Purification and
characterization of prodigiosin produced by integrated bioreactor from Serratia sp. KH-95. J
Biosci Bioeng. 2006;101(2):157-61.
16. Baskar , Madhanraj P, Kanimozhi K, Panneerselvam A. Characterization of carotenoids
from selected strains of Streptomyces sp. Ann Biol Res. 2010;1(4):194-200.
17. Rahimi MT, Sarvi S, Sharif M, Abediankenari S, Ahmadpour E, aladan R, et al. Molecular
Cloning, Expression and Characterization of Plasmid Encoding Rhomboid 4 (ROM4) of
Tachyzoite of Toxoplasma gondii RH Strain. Iranian journal of parasitology. 2017;12(4):498.
18. Csepanyi E, Czompa A, Haines D, Lekli I, Bakondi E, Balla , et al. Cardiovascular effects of
low versus high-dose beta-carotene in a rat model. Pharmacol Res. 2015;100:148-56.
19. Muthezhilan R, Ragul R, Pushpam R, Narayanan RL, Hussain AJ. Isolation, optimization and
extraction of microbial pigments from marine yeast Rhodotorula Sp (Amby109) as food
colourants. Biosci Biotechnol Res Asia. 2014;11:271-8.
20. Surekha P, Dhanya P, Sarath M, Pradeep S, Benjamin S. Micrococcus luteus strain BAA2, a
novel isolate produces carotenoid pigment. Electronic J of Biology. 2016;12(1):83-9.
21. Al-Wandawi H. Carotenoid Biosynthesis in Micrcoccus luteus rown in the Presence of
Different Concentrations of Nicotine. International Journal of Pure & Applied Sciences &
Technology. 2014;24(1).
22. Elsanhoty R, Al-Turki AI, M.M A-R. Production of carotenoids from Rhodotorula
mucilaginosa and their applications as colorant agent in sweet candy. 2017;15:21-6.
23. Taskin M, Sisman T, Erdal S, Kurbanoglu EB. Use of waste chicken feathers as peptone for
production of carotenoids in submerged culture of Rhodotorula glutinis MT-5. Eur Food Res
Technol. 2011;233(4):657.
24. Malisorn C, Suntornsuk W. Optimization of β-carotene production by Rhodotorula glutinis
DM28 in fermented radish brine. Bioresour Technol. 2008;99(7):2281-7.
25. Akinnibosun F, Omorodion S. Isolation and Characterization of Antibiotic-Resistant Bacteria
from Pesticide-Contaminated Agricultural Soils in Edo State, Nigeria. NISEB Journal.
2017;16(1).
26. Abbes M, Baati H, uermazi S, Messina C, Santulli A, harsallah N, et al. Biological
properties of carotenoids extracted from Halobacterium halobium isolated from a Tunisian
solar saltern. BMC Complement Altern Med. 2013;13(1):255.
27. Shree S, Prasad K , Arpitha H, Deepika U, Kumar KN, Mondal P, et al. β-carotene at
physiologically attainable concentration induces apoptosis and down-regulates cell survival
and antioxidant markers in human breast cancer (MCF-7) cells. Mol Cell Biochem. 2017;436
(1-2):1-12.
28. ijay K, Sowmya PR-R, Arathi BP, Shilpa S, Shwetha HJ, Raju M, et al. Low-dose
doxorubicin with carotenoids selectively alters redox status and upregulates oxidative
stress-mediated apoptosis in breast cancer cells. Food Chem Toxicol. 2018;118:675-90.
29. Heidari H. R. , Partovifar M. , and Memarpoor M., Evaluation of the Bioactive Potential of
Secondary Metabolites Produced by a New Marine Micrococcus Species Isolated from the
Persian ulf, Avicenna J Med Biotechnol. 2020 Jan-Mar; 12(1): 61–65.
30. Mohammadi M., Pourbabayee A. A., Javadi A., 2015, Optimization of carotenoid pigment
production by native strains Haloarchaea lipolitical, Journal of Microbial World, olume 8,
No. 2 (in persian)