جداسازی و شناسایی مولکولی مخمرهای کاروتنوئیدی تراوشات درختان توس منطقه مارمیشو در شمال غرب ایران
محورهای موضوعی : میکروب شناسی مولکولیفائزه آجرلو 1 , محسن واعظ 2 , جعفر همت 3
1 - دانشجوی دکتری، سازمان پژوهش های علمی و صنعتی ایران، پژوهشکده زیست فناوری
2 - استادیار، سازمان پژوهش های علمی و صنعتی ایران،
پژوهشکده زیست فناوری.
3 - استادیار، سازمان پژوهش های علمی و صنعتی ایران،
پژوهشکده زیست فناوری.
کلید واژه: تنوع زیستی, مخمر, آستاگزانتین, رنگدانه های کاروتنوئیدی, درختان توس منطقه مارمیشو,
چکیده مقاله :
سابقه و هدف: بخشی از تنوع زیستی و گوناگونی حیات در زیست بومهای مختلف کره زمین، متعلق به مخمرها می باشد. به دلیل اهمیت اقتصادی مخمرهای کاروتنوئیدی، زیستگاههای طبیعی و خاص آنها نیز مورد توجه است. این مطالعه با هدف جداسازی و شناسایی مولکولی مخمرهای کاروتنوئیدی تراوشات درختان کمیاب توس در منطقه مارمیشو در شمال غرب ایران اجرا گردید.مواد و روشها: این پژوهش به صورت مقطعی با نمونهبرداری از یکی از رویشگاههای طبیعی درختان توس گونه بتولا پندولادر شمال غرب ایران، استان آذربایجان غربی صورت پذیرفت. با استفاده از محیط کشت انتخابی اقدام به جداسازی مخمرها گردید. غربالگری کلنی ها برای مدت یک ماه از نظر شکل و رنگ صورتی تا قرمز صورت گرفت. در نهایت بخش D1/D2 ریبوزومی برای 19 جدایه تعیین ترادف گردید.یافتهها: از 45 سویه مخمری جداسازی شده واجد رنگدانه صورتی- قرمز، ژن ریبوزومی برای 19 جدایه توالی یابی شد. مخمرهای کاروتنوئیدی از نظر فیلوژنتیک در دسته بازیدیومایکوتا مشتمل بر جنسهای ردوتورولا، سیستوبازیدیوم، سیستوفیلوبازیدیوم، گزانتوفیلومایسس، یوستیلنتیلوما و رودوسپریدیوم قرار گرفتند.نتیجه گیری: الگوی منحصر به فرد اجتماع مخمرهای کاروتنوئیدی شکل گرفته در این کنام اکولوژیکی و قرار گرفتن جدایه ها با میزان تولید متفاوت رنگدانه در 6 جنس با توان بیوسنتز ساختارهای مختلف کاروتنوئیدی، نشان دهنده تنوع و غنای بالای اکوسیستم تراوشات درختان توس منطقه مارمیشو از نظر این گروه مخمرها است. این مطالعه اولین گزارش از تنوع مخمرهای کاروتنوئیدی در شمال غرب ایران می باشد و اجتماع متمایز سویه های مخمری بومی این زیستگاه را ارایه می نماید.
Background & Objectives: A portion of biodiversity and variability of life on earth belongs to the yeasts. The caroptenoid-producing yeasts are economically important and their distinct natural habitats are of interest. In this study, isolation and molecular identification of carotenoid-producing yeasts of the exudates of endangered birch trees (Betula pendula Roth.) at Marmisho in Northwest Iran were performed. Materials & Methods: This cross-sectional study carried out by sampling from exudates of birch trees (Betula pendula Roth.) at a natural habitat located in West Azerbaijan Province in the Northwest of Iran. Using selective media, the isolation of the yeasts was done. The screening was initially based on the color and shape of the colonies during one-month incubation along with simple rapid tests to check the existence of carotenoid pigments. Finally, the D1/D2 region rDNA sequencing was accomplished for 19 isolates. Results: 19 out of 45 isolates with pink-red colonies were selected for ribosomal gene sequencing. Phylogenetic results showed that the carotenoid-producing yeasts are in the Basidiomycota division including Rhodotorula, Cystofilobasidium, Cystobasidium, Rhodosporidiobolus, Ustilentyloma, and Xanthophyllomyces. Conclusion: The unique pattern of carotenogenic yeasts community at this ecological niche and placing in 6 genera with the capability to produce a variety of carotenoid structures indicate that the exudates of birch trees (Betula pendula Roth.) include a wide diversity for native carotenoid-producing yeasts. This study is the first report presenting the diversity of carotenoid-producing yeasts in the Northwest of Iran with a distinct consortium of native yeasts at this habitat.
organisms. Database Oxford. 2017; 3(1): 1-11.
2. Mata-Gómez LC, Montañez JC, Méndez-Zavala A, Aguilar CN. Biotechnological production of
carotenoids by yeasts: an overview. Microb Cell Fact. 2014; 13(1): 1-11.
3. Mannazzu I, Landolfo S, Da Silva TL, Buzzini P. Red yeasts and carotenoid production: outlining a
future for non-conventional yeasts of biotechnological interest. World J Microbiol Biotechnol.
2015; 31(11): 1665-1673.
4. Kurtzman C, Fell JW. The yeasts: a taxonomic study. 4th edition. Elsevier; 1998.
5. Hibbett DS, Taylor JW. Fungal systematics: is a new age of enlightenment at hand?. Nat Rev
Microbiol. 2013; 11(2): 129-133.
6. Vu D, Groenewald M, Szöke S, Cardinali G, Eberhardt U, Stielow B, de Vries M, Verkleij GJ,
Crous PW, Boekhout T, Robert V. DNA barcoding analysis of more than 9 000 yeast isolates
contributes to quantitative thresholds for yeast species and genera delimitation. Stud Mycol. 2016;
85(1): 91-105.
7. Rosa CA, Péter G. Biodiversity and Ecophysiology of Yeasts. 1st edition. Springer, Berlin,
Heidelberg; 2006.
8. Buzzini P, Lachance M, Andre, Yurkov, A. Yeasts in Natural Ecosystems: Ecology. 1st edition.
Springer, Cham.; 2017.
9. Butinar L, Spencer-Martins I, Gunde-Cimerman N. Yeasts in high Arctic glaciers: the discovery of
a new habitat for eukaryotic microorganisms. Anton Leeuw Int J G. 2007; 91(3): 277-289.
10. Starmer WT, Fell YW, Catranis CM, Aberdeen V, Ma LJ, Zhou S, Rogers SO. Yeasts in the genus
Rhodotorula recovered from the Greenland ice sheet. Life in ancient ice. 1st edition; 2005.
11. Boekhout T. Biodiversity: gut feeling for yeasts. Nature. 2005; 434(7032):449-450.
12. Péter G, Tornai-Lehoczki J, Dlauchy D. Ogataeapopulialbae sp. nov., a yeast species from white
poplar. FEMS Yeast Res. 2009; 9(6): 936-941.
13. de Vega C, Albaladejo RG, Guzmán B, Steenhuisen SL, Johnson SD, Herrera CM, Lachance MA.
Flowers as a reservoir of yeast diversity: description of Wickerhamiella nectarea fa sp. nov., and
Wickerhamiella natalensis fa sp. nov. from South African flowers and pollinators, and transfer of
related Candida species to the genus Wickerhamiella as new combinations. FEMS Yeast Res. 2017;
17(5): 1-11.
14. Weber RW. On the ecology of fungal consortia of spring sap-flows. Mycologist. 2006; 20(4):
140-143.
15. Grabek-Lejko D, Kasprzyk I, Zaguła G, Puchalski C. The bioactive and mineral compounds in
birch sap collected in different types of habitats. Balt For. 2017; 23(2): 394-401.
16. Hosseinzadeh CA, Fallah F, Yousefzadeh H. Genetic diversity and differentiation of the Iranian's
Betula pendula populations by DNA polymorphisms of three (CD, DT, K1K2) chloroplast genome
regions. Iran J Biol. 2015; 28(2): 191-201.
17. Larti M. Gasempoor S. Maassoumi A. Trees and shrubs in Marmisho area in West Azarbaijan. Iran
J Biol. 2011; 24(1): 104-109.
18. Polle A, Rennenberg H. Field studies on Norway spruce trees at high altitudes: II. Defense systems
against oxidative stress in needles. New Phytol. 1992; 121(4): 635-642.
19. Schroeder WA, Johnson EA. Carotenoids protect Phaffia rhodozyma against singlet oxygen
damage. J Ind Microbiol Biotechnol. 1995; 14(6): 502-507.
20. Moliné M, Libkind D, del Carmen Diéguez M, van Broock M. Photoprotective role of carotenoids
in yeasts: response to UV-B of pigmented and naturally-occurring albino strains. J Photochem Photobiol B. 2009; 95(3): 156-161.
21. Yurkov A, Wehde T, Kahl T, Begerow D. Aboveground deadwood deposition supports
development of soil yeasts. Diversity. 2012; 4(4): 453-474.
22. Arthur HE, Watson KE. Thermal adaptation in yeast: growth temperatures, membrane lipid, and
cytochrome composition of psychrophilic, mesophilic, and thermophilic yeasts. J Bacteriol. 1976;
128(1): 56-68.
23. Bhosale P. Environmental and cultural stimulants in the production of carotenoids from
microorganisms. J Microbiol Biotechnol. 2004; 63(4): 351-361.
24. Mrak EM, Phaff HJ, Mackinney G. A simple test for carotenoid pigments in yeasts. J Bacteriol.
1949; 57(4): 409-411.
25. Sampaio JP, Gadanho M, Santos S, Duarte FL, Pais C, Fonseca A, Fell JW. Polyphasic taxonomy
of the basidiomycetous yeast genus Rhodosporidium: Rhodosporidium kratochvilovae and related
anamorphic species. Int J Syst Evol Microbiol. 2001; 51(2): 687-697.
26. Scorzetti G, Fell JW, Fonseca A, Statzell-Tallman A. Systematics of basidiomycetous yeasts: a
comparison of large subunit D1/D2 and internal transcribed spacer rDNA regions. FEMS Yeast
Res. 2002; 2(4): 495-517.
27. Fell JW, Boekhout T, Fonseca A, Scorzetti G, Statzell-Tallman A. Biodiversity and systematics of
basidiomycetous yeasts as determined by large-subunit rDNA D1/D2 domain sequence analysis.
Int J Syst Evol Microbiol. 2000; 50(3): 1351-1371.
28. Filatov DA. ProSeq: a software for preparation and evolutionary analysis of DNA sequence data
sets. Mol Ecol Notes. 2002; 2(4): 621-644.
29. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol
Biol. 1990; 215(3): 403-410.
30. Woffelman C. DNAMAN for Windows, Version 5.2. 10. Lynon Biosoft. Institute of Molecular
Plant Sciences, Netherlands: Leiden University. 2004.
31. Gilbert DG. Dispersal of yeasts and bacteria by Drosophila in a temperate forest. Oecologia. 1980;
46(1): 135-137.
32. Buzzini P, Innocenti M, Turchetti B, Libkind D, van Broock M, Mulinacci N. Carotenoid profiles
of yeasts belonging to the genera Rhodotorula, Rhodosporidium, Sporobolomyces, and
Sporidiobolus. Can J Microbiol. 2007; 53(8): 1024-1031.
33. Frengova GI, Beshkova DM. Carotenoids from Rhodotorula and Phaffia: yeasts of
biotechnological importance. J Ind Microbiol Biotechnol. 2009; 36(2): 163.
34. Golubev VI, Bab’eva IP, Novik SN. Yeast succession in birch sap flows. Sov J Ecol. 1977; 8:
399-403.
35. Nahvi I, Vaez M, Emtiazi G. Evaluation of carotenoid-producing yeasts associated with birch trees
(Betula pendula) in the North of Iran-Shahrestanak village. Pajouhesh-va-Sazandegi. 2000; 13(3):
70-74. [In Persian].
36. Weber RW, Davoli P. Xanthophyllomyces and other red yeasts in microbial consortia on spring
sap-flow in the Modena province (Northern Italy). Atti Soc Nat Mat Modena. 2005; 136(2):
127-135.
37. Weber RW, Davoli P, Anke H. A microbial consortium involving the astaxanthin producer
Xanthophyllomyces dendrorhous on freshly cut birch stumps in Germany. Mycologist. 2006; 20(2):
57-61.
38. Mittelbach M, Yurkov AM, Nocentini D, Nepi M, Weigend M, Begerow D. Nectar sugars and
bird visitation define a floral niche for basidiomycetous yeast on the Canary Islands. BMC Ecol.
2015; 15(1): 1-13.
39. Glushakova AM, Chernov IY. Seasonal dynamics in a yeast population on leaves of the common
wood sorrel Oxalis acetosella L. Microbiology (Moscow). 2004; 73(2)
_||_
organisms. Database Oxford. 2017; 3(1): 1-11.
2. Mata-Gómez LC, Montañez JC, Méndez-Zavala A, Aguilar CN. Biotechnological production of
carotenoids by yeasts: an overview. Microb Cell Fact. 2014; 13(1): 1-11.
3. Mannazzu I, Landolfo S, Da Silva TL, Buzzini P. Red yeasts and carotenoid production: outlining a
future for non-conventional yeasts of biotechnological interest. World J Microbiol Biotechnol.
2015; 31(11): 1665-1673.
4. Kurtzman C, Fell JW. The yeasts: a taxonomic study. 4th edition. Elsevier; 1998.
5. Hibbett DS, Taylor JW. Fungal systematics: is a new age of enlightenment at hand?. Nat Rev
Microbiol. 2013; 11(2): 129-133.
6. Vu D, Groenewald M, Szöke S, Cardinali G, Eberhardt U, Stielow B, de Vries M, Verkleij GJ,
Crous PW, Boekhout T, Robert V. DNA barcoding analysis of more than 9 000 yeast isolates
contributes to quantitative thresholds for yeast species and genera delimitation. Stud Mycol. 2016;
85(1): 91-105.
7. Rosa CA, Péter G. Biodiversity and Ecophysiology of Yeasts. 1st edition. Springer, Berlin,
Heidelberg; 2006.
8. Buzzini P, Lachance M, Andre, Yurkov, A. Yeasts in Natural Ecosystems: Ecology. 1st edition.
Springer, Cham.; 2017.
9. Butinar L, Spencer-Martins I, Gunde-Cimerman N. Yeasts in high Arctic glaciers: the discovery of
a new habitat for eukaryotic microorganisms. Anton Leeuw Int J G. 2007; 91(3): 277-289.
10. Starmer WT, Fell YW, Catranis CM, Aberdeen V, Ma LJ, Zhou S, Rogers SO. Yeasts in the genus
Rhodotorula recovered from the Greenland ice sheet. Life in ancient ice. 1st edition; 2005.
11. Boekhout T. Biodiversity: gut feeling for yeasts. Nature. 2005; 434(7032):449-450.
12. Péter G, Tornai-Lehoczki J, Dlauchy D. Ogataeapopulialbae sp. nov., a yeast species from white
poplar. FEMS Yeast Res. 2009; 9(6): 936-941.
13. de Vega C, Albaladejo RG, Guzmán B, Steenhuisen SL, Johnson SD, Herrera CM, Lachance MA.
Flowers as a reservoir of yeast diversity: description of Wickerhamiella nectarea fa sp. nov., and
Wickerhamiella natalensis fa sp. nov. from South African flowers and pollinators, and transfer of
related Candida species to the genus Wickerhamiella as new combinations. FEMS Yeast Res. 2017;
17(5): 1-11.
14. Weber RW. On the ecology of fungal consortia of spring sap-flows. Mycologist. 2006; 20(4):
140-143.
15. Grabek-Lejko D, Kasprzyk I, Zaguła G, Puchalski C. The bioactive and mineral compounds in
birch sap collected in different types of habitats. Balt For. 2017; 23(2): 394-401.
16. Hosseinzadeh CA, Fallah F, Yousefzadeh H. Genetic diversity and differentiation of the Iranian's
Betula pendula populations by DNA polymorphisms of three (CD, DT, K1K2) chloroplast genome
regions. Iran J Biol. 2015; 28(2): 191-201.
17. Larti M. Gasempoor S. Maassoumi A. Trees and shrubs in Marmisho area in West Azarbaijan. Iran
J Biol. 2011; 24(1): 104-109.
18. Polle A, Rennenberg H. Field studies on Norway spruce trees at high altitudes: II. Defense systems
against oxidative stress in needles. New Phytol. 1992; 121(4): 635-642.
19. Schroeder WA, Johnson EA. Carotenoids protect Phaffia rhodozyma against singlet oxygen
damage. J Ind Microbiol Biotechnol. 1995; 14(6): 502-507.
20. Moliné M, Libkind D, del Carmen Diéguez M, van Broock M. Photoprotective role of carotenoids
in yeasts: response to UV-B of pigmented and naturally-occurring albino strains. J Photochem Photobiol B. 2009; 95(3): 156-161.
21. Yurkov A, Wehde T, Kahl T, Begerow D. Aboveground deadwood deposition supports
development of soil yeasts. Diversity. 2012; 4(4): 453-474.
22. Arthur HE, Watson KE. Thermal adaptation in yeast: growth temperatures, membrane lipid, and
cytochrome composition of psychrophilic, mesophilic, and thermophilic yeasts. J Bacteriol. 1976;
128(1): 56-68.
23. Bhosale P. Environmental and cultural stimulants in the production of carotenoids from
microorganisms. J Microbiol Biotechnol. 2004; 63(4): 351-361.
24. Mrak EM, Phaff HJ, Mackinney G. A simple test for carotenoid pigments in yeasts. J Bacteriol.
1949; 57(4): 409-411.
25. Sampaio JP, Gadanho M, Santos S, Duarte FL, Pais C, Fonseca A, Fell JW. Polyphasic taxonomy
of the basidiomycetous yeast genus Rhodosporidium: Rhodosporidium kratochvilovae and related
anamorphic species. Int J Syst Evol Microbiol. 2001; 51(2): 687-697.
26. Scorzetti G, Fell JW, Fonseca A, Statzell-Tallman A. Systematics of basidiomycetous yeasts: a
comparison of large subunit D1/D2 and internal transcribed spacer rDNA regions. FEMS Yeast
Res. 2002; 2(4): 495-517.
27. Fell JW, Boekhout T, Fonseca A, Scorzetti G, Statzell-Tallman A. Biodiversity and systematics of
basidiomycetous yeasts as determined by large-subunit rDNA D1/D2 domain sequence analysis.
Int J Syst Evol Microbiol. 2000; 50(3): 1351-1371.
28. Filatov DA. ProSeq: a software for preparation and evolutionary analysis of DNA sequence data
sets. Mol Ecol Notes. 2002; 2(4): 621-644.
29. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol
Biol. 1990; 215(3): 403-410.
30. Woffelman C. DNAMAN for Windows, Version 5.2. 10. Lynon Biosoft. Institute of Molecular
Plant Sciences, Netherlands: Leiden University. 2004.
31. Gilbert DG. Dispersal of yeasts and bacteria by Drosophila in a temperate forest. Oecologia. 1980;
46(1): 135-137.
32. Buzzini P, Innocenti M, Turchetti B, Libkind D, van Broock M, Mulinacci N. Carotenoid profiles
of yeasts belonging to the genera Rhodotorula, Rhodosporidium, Sporobolomyces, and
Sporidiobolus. Can J Microbiol. 2007; 53(8): 1024-1031.
33. Frengova GI, Beshkova DM. Carotenoids from Rhodotorula and Phaffia: yeasts of
biotechnological importance. J Ind Microbiol Biotechnol. 2009; 36(2): 163.
34. Golubev VI, Bab’eva IP, Novik SN. Yeast succession in birch sap flows. Sov J Ecol. 1977; 8:
399-403.
35. Nahvi I, Vaez M, Emtiazi G. Evaluation of carotenoid-producing yeasts associated with birch trees
(Betula pendula) in the North of Iran-Shahrestanak village. Pajouhesh-va-Sazandegi. 2000; 13(3):
70-74. [In Persian].
36. Weber RW, Davoli P. Xanthophyllomyces and other red yeasts in microbial consortia on spring
sap-flow in the Modena province (Northern Italy). Atti Soc Nat Mat Modena. 2005; 136(2):
127-135.
37. Weber RW, Davoli P, Anke H. A microbial consortium involving the astaxanthin producer
Xanthophyllomyces dendrorhous on freshly cut birch stumps in Germany. Mycologist. 2006; 20(2):
57-61.
38. Mittelbach M, Yurkov AM, Nocentini D, Nepi M, Weigend M, Begerow D. Nectar sugars and
bird visitation define a floral niche for basidiomycetous yeast on the Canary Islands. BMC Ecol.
2015; 15(1): 1-13.
39. Glushakova AM, Chernov IY. Seasonal dynamics in a yeast population on leaves of the common
wood sorrel Oxalis acetosella L. Microbiology (Moscow). 2004; 73(2)